Patient Monitor Rev. 3.1

Table of Contents

BM5 (CS, CX) User's Manual	0
Table of Contents	1
1. BASIC	8
1.1 CE Standard Information	9
1.2 Read before Use	10
How to Contact Us	10
Warranty Period	11
Warning, Caution, Note	12
General Precaution on Environment	13
General Precaution on Electric Safety	18
Manufacturer's declaration - electromagnetic emission	
Cleaning Applied Parts	
1.3 Product Components	29
Product Outline	29
Principal Characters of Product	29
Product Configuration	30
Option Product	30
Accessories	33
Equipment Sign	34
1.4 Function and Key	37
External Function	37
Operation Key	37
1.5 Standard Power Supply Application	39
DC Power	39
1.6 Battery Power Supply Application	40
Operation	40
The Impact of Lithium-Ion Battery Technology on the Battery	42
Conditioning Guideline	42

Storage Guideline	42
How to Recycle the Battery	42
To insert and remove the battery pack.	43
1.7 General Manu Operation	44
Screen Composition	
Menu Selection	47
Menu Composition	47
2. PATIENT/DATA MANAGEMENT	50
2.1 ADMIT	52
ADMIT TYPE	52
CHANGE ADMIT INFO	53
DISCHARGE	54
ADMIT	54
HEIGHT	55
WEIGHT	55
DEFAULT SETTING	56
DRUG CALCULATION	56
CHANGE VLAUE	56
TITRATION TABLE	57
DRUG QTY RANGE	58
2.2 ALARM	60
Alarm for the Product	60
ALL LIMITS	61
ALARM PRINT	62
ALARM VOLUME	63
ALARM REVIEW	63
ALARM LIST	64
SAVING CONDITION	65
ECG WAVE SELECT (ALARM LIST ECG LEAD SELECT)	66
ARRHYTH LEVEL	66
NURSE CALL	67
3. SETUP	69
3.1 SETUP	70

DISPLAY	70
SET PARA	70
WAVE SELECT	71
SET DATE & TIME	74
SET TIME	74
SET DATE	74
COLOR SELECT	75
HR/PR SELECT	76
SET SWEEP	76
DEMO	77
KEY SOUND	77
UNIT SELECT	77
USER SERVICE	79
SET UNIT NAME	79
SET BED NUMBER	80
AC FILTER	80
W-LAN	80
SYSTEM	81
MAKER SERVICE	81
FREEZE MENU	81
4. TREND	82
4.1 TREND	83
GRAPHIC TREND	84
TIME PERIOD	85
TABULAR TREND	86
TIME INTERVAL	87
TREND WINDOW SETUP	87
TIME PERIOD	88
SET TREND PARA	89
TREND PRINT	89
5. ECG	90
5.1 Introduction	91
Colors and Standards of Cables	91
Position of ECG Connector and Measuring Cable	92

Attaching Electrodes to the Patient	92
Choosing an ECG lead for Arrhythmia Monitoring	93
Information on the ECG waveform	94
10 Position of 10-Lead	94
5 Position of 5-Lead	94
Position of 3-Lead Wrier Electrode	95
How to Attach the NEONATE Electrode	95
5.2 ECG Data Window	96
5.3 ECG Data Setup	99
QRS VOLUME	101
DISPLAY	101
ECG SWEEP SPEED	102
ECG SIZE	102
VIEW ECG	102
ANALYSIS SETTING	103
12 CH ECG ANALYSIS	109
6. SpO ₂	
6.1 Outline	123
SpO2 Connector Location and Measuring Cable	123
6.2 SpO2 Data Window	124
Signal and Data Validity	125
6.3 SpO ₂ Data Setup	127
RATE VOLUME	127
ALARM	127
LEAD FAULT Condition	129
SPO2 Messages	129
7. RESPIRATION	
7.1 Outline	131
7.2 Respiration Data Window	133
7.3 Respiration Data Setup	134
RESPIRATION SPEED	134
RESPIRATION	135

APNEA DETECT	135
LEAD SELECT	136
ALARM	136
8. NIBP	
8.1 Outline	139
8.2 NIBP Data Window	141
8.3 NIBP Data Setup	142
ALARM	142
NIBP STAT	143
CUFF SIZE	144
UNIT SELECT	144
INTERVAL	145
INFLATION	145
9. IBP	
9.1 Description	149
9.2 IBP Data Window	152
9.3 IBP Data Setting	153
10. EtCO2	
10.1 Introduction	163
10.2 EtCO2 Parameter Window	168
10.3 EtCO2 Parameter Setting Menu	169
EtCO2 SWEEP SPEED	170
WAVEFORM SCALE (Measured waveform scale setting)	171
ZERO	171
SETTINGS (Various setting)	172
MODULE INFO	175
MODULE RESET	176
APNEA DETECT	176
10.4 TROUBLESHOOTING	178
11. TEMPERATURE	

11.1 Outline	180
11.2 Temperature Data Window	181
11.3 Temperature Data Setup	182
ALARM	182
UNIT SELECT	183
12. PRINT	
12.1 Print	185
Printer and Heat Sensitivity Paper	185
Function and Setup Menu	186
PRINTER TIME	188
PRINTER KEY	188
Thermal Paper Storage	189
12.2 Paper Change	191
13. MESSAGE LIST	
14. DEFAULT SETTING VALUE	
14.1 Adult-ICU Mode	193
Alarm level	193
Parameter Limits	194
Display	195
14.2 Neonate-ICU Mode	196
Alarm level	196
Parameter Limits	197
Display	198
14.3 Pediatric-ICU Mode	199
Alarm level	199
Parameter Limits	200
Display	201
15. TROUBLE SHOOTING	202
15.1 Noise in ECG	202
15.2 SpO2 malfunction	203

15.3 Temp malfunction	203
15.4 NIBP malfunction	204
15.5 Abnormality in NIBP measurements	204
15.6 Failure in battery recharge	205
15.7 Power failure	206
15.8 Periodic noises	207
15.9 Print failure	208
16. SPECIFICATION	209
Ease of use	210
Additional Function	210
Monitor Environmental Specifications	210
Power	210
Specification	210
Accessories Included:	213
Option	213
Abbreviations and Symbols	214
PRODUCT WARRANTY	217

1. BASIC

1.1 CE Standard Information

1.2 Read before Use

Warranty Period
Warning, Caution, Note
General Precaution on Environment
General Precaution on Electric Safety
Equipment Connection, Maintenance & Washing Equipment Connection

1.3 Product Components

Product Outline
Principal Characteristics of Product
Product Configuration and Option Product
Product Body Configuration

1.4 Function and Key

External Function
Operation Key

1.5 Standard Power Supply Application

1.6 Battery Power Supply Application

1.7 General Menu Operation

Screen Composition

Menu Selection

Menu Composition

1.1 CE Standard Information

Electromechanical safety standards met:

- EN 60601-1: 1990 + A1:1993 + A2: 1995 + A13:1996 Medical Electrical Equipment, Part 1, General Requirements for Safety.
- IEC/EN 60601-1-2:2001 Electromagnetic compatibility -Requirements and tests.
- EN 1060-1:1995 Non-invasive sphygmomanometers Part 1: General requirements
- EN 1060-3:1997 Non-invasive sphygmomanometers Part 3: Supplementary requirements for electro-mechanical blood pressure measuring systems
- EN ISO 9919:2005 Medical electrical equipment Particular requirements for the basic safety and essential performance
- of pulse oximeter equipment for medical use (ISO 9919:2005)
- EN 60601-2-27:2006 Medical electrical equipment Part 2-27: Particular requirements for the safety, including essential performance,
- of electrocardiographic monitoring equipment
- EN 60601-2-30:2000 Medical electrical equipment Part 2-30: Particular requirements for the safety, including essential performance,
- of automatic cycling non-invasive blood pressure monitoring equipment
- EN 60601-2-34:2000 Medical electrical equipment Part 2: Particular requirements for the safety, including essential performance, of invasive blood pressure monitoring equipment
- EN 12470-4:2001 Clinical thermometers Part 4: Performance of electrical thermometers for continuous measurement
- EN 60601-2-49:2001 Medical electrical equipment Part 2-49: Particular requirements for the safety of multifunction patient monitoring equipment

1.2 Read before Use

BIONET services are always available to you.

The followings are address and phone number for contacting information, services, and product supplies.

How to Contact Us

Product Supply	Bionet Ltd. – Sales Department
Information	#1101 ,11F E&C Venture Dream Tower3 38-21, Digital-Ro, 31-Gil,
	Guro-Gu, Seoul, REPUBLIC OF KOREA (ZIP 152-050)
	Overseas sales dept.
	Tel:++82-2-6300-6418
	Fax: ++82-2-6300-6454
	E-mail: sales@ebionet.com
	URL: http://www.ebionet.com

* In the event of malfunction or failure, contact us along with the model name, serial number, and product name of the equipment.

* If you need the supply circuit diagram, component list, description and calibration instruction etc. you can contact us we will provide you with it.

The information in this manual only applies to BM5CS/CX patient monitor software version 1.01. Due to continuing product innovation, specifications in this manual are subject to change without notice.

Warranty Period

- This product is manufactured and passed through strict quality control and through inspection.
- Warranty period is 1 year.(Two year in Europe).
- We will repair or replace any part of the BM5 (CS, CX) found to be defective in usual operating circumstance for free to you.
- This warranty does not apply to any defect caused by improper abuse, misuse or exposure to poor management.

Warning, Caution, Note

For special emphasis on agreement, terms are defined as listed below in user's manual. Users should operate the equipment according to all the warnings and cautions.

Warning

To inform that it may cause serious injury or death to the patient, property damage, material losses against the "warning" sign

Caution

To inform that it may cause no harm in life but lead to injury against the "caution" sign

Note

To inform that it is not dangerous but important "note" sign for proper installation, operation, and maintenance of the equipment.

General Precaution on Environment

- Do not keep or operate the equipment in the environment listed below.

	Avoid placing in an area exposed to moist. Do not touch the equipment with wet hand.		Avoid exposure to direct sunlight
	Avoid placing in an area where there is a high variation of temperature. Operating temperature ranges from 10(C to 40(C. Operating humidity ranges from 30% to 85%.		Avoid in the vicinity of Electric heater
S MOST	Avoid placing in an area where there is an excessive humidity rise or ventilation problem.		Avoid placing in an area where there is an excessive shock or vibration.
	Avoid placing in an area where chemicals are stored or where there is danger of gas leakage.	100 70	Avoid being inserted dust and especially metal material into the equipment
00%	Do not disjoint or disassemble the equipment. We take no responsibility for it.		Power off when the equipment is not fully installed. Otherwise, equipment could be damaged.

CAUTIONS

Before Installation

Compatibility is critical to safe and effective use of this device. Please contact your local sales or service representative prior to installation to verify equipment compatibility.

Defibrillator Precaution

Patient signal inputs labeled with the CF and BF symbols with paddles are protected against damage resulting from defibrillation voltages. To ensure proper defibrillator protection, use only the recommended cables and lead wires.

Proper placement of defibrillator paddles in relation to the electrodes is required to ensure successful defibrillation.

Disposables

Disposable devices are intended for single use only. They should not be reused as performance could degrade or contamination could occur.

Disposal of your old appliance

- When this crossed out wheeled bin symbol is attached to a product it means the product is covered by the European Directive 2002/96/EC.
- All electrical and electronic products should be disposed of separately from the municipal waste stream via designated collection facilities appointed by the government or the local authorities.
- The correct disposal of your old appliance will help prevent potential negative consequences for the environment and human health.
- 4. For more detailed information about disposal of your old appliance, please contact your city office, waste disposal service or the shop where you purchased the product.

Electrocute Precautions

To prevent skin burns, apply electrocute electrodes as far as possible from all other electrodes, a distance of at 15 cm/6 in. is recommended.

EMC

Magnetic and electrical fields are capable of interfering with the proper performance of the device.

For this reason make sure that all external devices operated in the vicinity of the monitor comply with the relevant EMC requirements. X-ray equipment or MRI devices are possible source of interference as they may emit higher levels of electromagnetic radiation.

Also, keep cellular phones to other telecommunication equipment away from the monitor.

CAUTIONS

Instruction for Use

For continued safe use of this equipment, it is necessary that the instructions are followed. However, instructions listed in this in no way supersede established medical practices concerning patient care.

Loss of Data

Should the monitor at any time temporarily lose patient data, the potential exists that active monitoring is not being done. Close patient observation or alternate monitoring devices should be used until monitor function is restored.

If the monitor does not automatically resume operation within 60 seconds, power cycle the monitor using the power on/off switch. Once monitoring is restored, you should verify correct monitoring state and alarm function.

Maintenance

Regular preventive maintenance should be carried out annually (Technical inspections). You are responsible for any requirements specific to your country.

MPSO

The use of a multiple portable socket outlet (MPSO) for a system will result in an enclosure leakage current equal to the sum of all individual earth leakage currents of the system if there is an interruption of the MPSO protective earth conductor. Do not use an additional extension cable with the MPSO as it will increase the chance of the single protective earth conductor interruption.

Negligence

BIONET does not assume responsibility for damage to the equipment caused by improperly vented cabinets, improper or faulty power, or insufficient wall strength to support equipment mounted on such walls.

NOTES

Power Requirements

Before connecting the device to the power line, check that the voltage and frequency. Ratings of the

power line are the same as those indicated on the unit's label. If this is not the case, do not connect

the system to the power line until you adjust the unit to match the power source.

In U.S.A, if the installation of this equipment will use 240V rather than 120V, the source must

be a center-tapped, 240V, single-phase circuit.

Restricted Sale

U.S.A federal law restricts this device to sale by or on the order of a physician.

Supervised Use

This equipment is intended for use under the direct supervision of a licensed health care practitioner.

Ventilation Requirements

Set up the device in a location which affords sufficient ventilation. The ventilation openings of the

device must not be obstructed. The ambient conditions specified in the technical specifications must

be ensured at all times.

•Put the monitor in a location where you can easily see the screen and access the operating controls.

•This product is protected against the effects of cardiac defibrillator discharges to ensure proper

recovery, as required by test standards. (the screen may blank during a defibrillator discharge but

recovers within second as required by test standards.)

Reference Literature

Medical Device Directive 93/42/EEC

EN 60601-1/1990 +A1: 1993 +A2: 1995: Medical electrical equipment.

General requirements for safety

EN 60601-1-1/9. 1994 +A1 12.95: General requirements for safety.

General Precaution on Electric Safety

Warning

Check the item listed below before operating the equipment.

- 1. Be sure that AC power supply line is appropriate to use. (AC100 240V)
- 2. Be sure that the power source is the one supplied from Bionet. (DC18V, 2.5A, MW160KA1803)
- 3. Be sure that the entire connection cable of the system is properly and firmly fixed.
- 4. Be sure that the equipment is completely grounded. (If not, there might be the problem occur in the product.)
- 5. The equipment should not be placed in the vicinity of electric generator, X-ray, broadcasting apparatus to eliminate the electric noise during operation. Otherwise, it may cause incorrect result.

Note

The Equipment should be placed far from generator, X-ray equipment, broadcasting equipment or transmitting wires, so as to prevent the electrical noises from being generated during the operation, When these devices are near the Equipment, it can produce inaccurate measurements. For BM5 (CS, CX) both independent circuit and stable grounding are essentially required. In the event that the same power source is shared with other electronic equipment, it can also produce inaccurate output.

Warning

Do not contacts with the patient while operate the machine It may cause serious danger to the users. Use only the provided cable.

A warning that other cables and accessories may negatively affect EMC performance

Warning

In case the Equipment does not operate as usual or damaged, do not use on patient, and contact to the medical equipment technician of the hospital or the equipment supply division.

Note

BM5 (CS, CX) is classified as follows:

- BM5 (CS, CX) classifies as Class **I,** BF & CF concerning electric shock. It is not proper to operate this Equipment around combustible anesthetic or dissolvent.
- Noise level is B class regarding IEC/EN 60601-1 and the subject of Nose is B level concerning IEC/EN60601-1-2.

Equipment Connection

For measurements in or near the heart we recommend connecting the monitor to the potential equalization system. Use the green and yellow potential equalization cable and connect it to the pin labeled with the symbol \checkmark .

Manufacturer's declaration - electromagnetic emission

The BM5 system is intended for use in the electromagnetic environment specified below. The			
customer or the user of BM5 system should assure that it is used in such an environment			
Emission test	Compliance	Electromagnetic environment - guidance	
RF emissions	Group 1	The BM5 system uses RF energy only for its	
CISPR 11		internal function. Therefore. Its RF emissions are	
		very low and are not likely to cause any	
		interference in nearby electronic equipment	
RF emissions	Class B	The BM5 system is suitable for use in all establi	
CISPR 11		shments other than domestic and those directly	
Harmonics emission	A	connected to the public low-voltage power sup	
IEC 61000-3-2		plies buildings used for domestic purposes.	
Voltage fluctuation	Complies		
IEC 61000-3-3			

Manufacturer's declaration - electromagnetic immunity

The BM5 system is intended for use in the electromagnetic environment specified below. The customer or the user of the BM5 system should assure that it is used in such an environment Immunity test IEC 60601 Compliance level Electromagnetic Test level **Environment -guidance** Electrostatic dis 6 kV Contact 6 kV Contact Floors should be wood, co 8 kV Air charge (ESD) 8 kV Air ncrete or ceramic tile. If f IEC 61000-4-2 loors are covered with sy nthetic material, the relati ve humidity should be at l east 30 % Electrical fast 2kV for power supply lin 2kV for power supply li Mains power quality shoul Transient / burs es 1kV for input/output li nes d be that of a typical com nes 1kV for input/output lin mercial or hospital environ IEC 61000-4-4 ment. Surge 1 kV differential mode 1 kV differential mode Mains power quality shoul IEC 61000-4-5 | 2 kV common mode 2 kV common mode d be that of a typical com mercial or hospital environ ment. Power frequenc 3.0 A/m 3.0 A/mPower frequency magnetic fields should be at levels (50/60Hz)characteristic of a typical Magnetic field location in a typical comm IEC 61000-4-8 ercial or hospital environm

Rev. 3.1 1.BASIC 20

ent.

Voltage dips, s	<5% <i>U</i> _T (>95% dip in <i>U</i>	<5% <i>U</i> r (>95% dip in <i>U</i>	Mains power quality shoul
hort	T)	T)	d be that of a typical com
Interruptions an	for 0.5cycle	for 0.5cycle	mercial or hospital environ
d			ment. If the user of the
Voltage variatio	$40\%~U_{\rm T}$ (60% dip in $U_{\rm T}$	40% <i>U</i> r (60% dip in <i>U</i> r	BM5 system requires conti
ns))	nued operation during pow
on power suppl	for 5 cycle	for 5 cycle	er mains interruptions, it i
У			s recommended that the
input lines	70% <i>U</i> r (30% dip in <i>U</i> r)	70% $U_{\rm T}$ (30% dip in $U_{\rm T}$)	BM5 system be powered fr
IEC 61000-4-1	for 25 cycle	for 25 cycle	om an uninterruptible pow
1			er supply or a battery
	$<\!5\%$ $U_{\rm T}$ ($\!<\!95\%$ dip in $U_{\rm T}$	$<5\%$ $U_{\rm T}$ ($<95\%$ dip in U	
)	т)	
	for 5 s	for 5 s	
Note: Ut is the a.c. mains voltage prior to application of the test level.			

The BM5 system is intended for use in the electromagnetic environment specified below. The customer or the user of the BM5 system should assure that it is used in such an environment IEC 60601 Compliance level Electromagnetic environment -guidance Immunity test Test level Portable and mobile RF communications Conducted RF 3 Vrms 3 Vrms IEC 61000-4- 150 kHz to 80 M 150 kHz to 80 MH equipment should be used no closer to Hz any part of the BM5 system, including cables, than the recommended separati on distance calculated from the equatio n applicable to the frequency of the tra nsmitter. **Recommended separation distance** $d = \left[\frac{3.5}{V_1}\right] \sqrt{P}$

Radiated RF	3 V/m	3 V/m	Recommended separation distance
IEC 61000-4-	80.0 MHz to 2.5	80.0 MHz to 2.5 G	
3	GHz	Нz	$d = [\frac{3.5}{E_1}]\sqrt{P}$ 80 MHz to 800 MHz
			$d = [\frac{7}{E_1}]\sqrt{P}$ 800 MHz to 2,5 GHz
			Where P is the maximum output power
			rating of the transmitter in watts (W)
			according to the transmitter manufactur
			er and <i>d</i> is the recommended separatio
			n distance in meters (m).
			Field strengths from fixed RF transmitt
			ers, as deter-mined by an electromagn
			etic site survey,
			(a) Should be less than the compliance
			level in each frequency range (b).
			Interference may occur in the vicinity of
			equipment marked with the following s
			ymbol:
			((·))

Note 1) Ut is the A.C. mains voltage prior to application of the test level.

Note 2) At 80 MHz and 800 MHz, the higher frequency range applies.

Note 3) These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

a Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) te lephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the mea sured field strength in the location in which the EUT is used exceeds the applicable RF compliance level above, the EUT should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the EUT.

b Over the frequency range 150 kHz to 80 MHz, field strengths should be less than [V1] V / m.

Recommended Separation Distances Between Portable and Mobile RF Communications Equipment and

the BM5 system.

The **BM5** system is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The user of the **BM5** system can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the BM5 system as recommended below, according to the maximum output power of the communications equipment.

Rated maximum output	Separation distance (m) according to frequency of transmitter		
power (W) of transmitter	150 kHz to 80 MHz	80 MHz to 800 MHz	800 MHz to 2.5 GHz
0.01	0.12	0.12	0.23
0.1	0.37	0.37	0.74
1	1.17	1.17	2.33
10	3.70	3.70	7.37
100	11.70	11.70	23.30

For transmitters rated at a maximum output power not listed above, the recommended separa tion distance (d) in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

Note 1: At $80~\mathrm{MHz}$ and $800~\mathrm{MHz}$, the separation distance for the higher frequency range app lies

Note 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

Immunity and Compliance Level			
Immunity test	IEC 60601 Test Level	Actual Immunity Level	Compliance Level
Conducted RF	3 Vrms, 150 kHz to 80	3 Vrms, 150 kHz to 80	3 Vrms, 150 kHz to 80
IEC 61000-4-6	MHz	MHz	MHz
Radiated RF	3 V/m, 80 MHz to 2.5 GHz	3 V/m, 80 MHz to 2.5 GHz	3 V/m, 80 MHz to 2.5 GHz
IEC 61000-4-3			

Guidance and manufacturer's declaration - electromagnetic immunity

The BM5 system is intended for use in the electromagnetic environment specified below.			
The customer or the user of the BM5 system should assure that it is used in such an environment			
Immunity test	IEC 60601	Compliance level	Electromagnetic environment -guidance
	Test level		
Conducted RF	3 Vrms	3 Vrms	BM5 system must be used only in a shi
IEC 61000-4-	150 kHz to 80M	150 kHz to 80 M	elded location with a minimum RF shiel
6	Hz	Hz	ding effectiveness and, for each cable t
			hat enters the shielded location with a
			minimum RF shielding effectiveness an
			d, for each cable that enters the shield
			ed location

Radiated RF	3 V/m	3 V/m	Field strengths outside the shielded loc
IEC 61000-4-	80.0 MHz to 2.5	80.0 MHz to 2.5	ation from fixed RF transmitters, as det
3	GHz	GHz	ermined by an electromagnetic site surv
			ey, should be less than 3V/m. a
			Interference may occur in the vicinity o
			f equipment marked with the following
			symbol:
			(4.1)
			((<u>`</u>))
			=

Note 1) These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Note 2) It is essential that the actual shielding effectiveness and filter attenuation of the shielded location be verified to assure that they meet the minimum specification.

a- Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadc ast cannot be predicted theoretically with accuracy. To assess the electromagnetic environme nt due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength outside the shielded location in which the EUT is used exceeds 3V/m, the EUT should be observed to verify normal operation.

If abnormal performance is observed, additional measures may be necessary, such as relocating the EUT or using a shielded location with a higher RF shielding effectiveness and filter at tenuation.

Note

For Type A Professional ME Equipment intended for use in domestic establishment instructions for use includes a warning:

This ME equipment is intended for use by professional healthcare personnel only.

Caution

In the hospital, doctors and patients are exposed to dangerous, uncontrollable compensating currents. These currents are due to the potential differences between connected equipment The safety solution to the problem is accomplished with EN60601-1;1996.

Biocompatibility

When used as intended, the parts of the product described in this operator manual, including accessories that come in contact with the patient during the intended use, fulfill the biocompatibility requirements of the applicable standards. If you have questions about this matter, please contact BIONET or its representatives.

Maintenance and Washing Equipment Connection

Using various methods can clean BM5 (CS, CX) and its accessories. Please follow the methods mentioned below to avoid unnecessary damage or contamination to the Equipment.

We do not repair with free of charge regardless of warranty period if it is contaminated or damaged with using dangerous material not designated for washing.

Cleaning Applied Parts

Do not permit any liquid to enter the monitor case and avoid pouring it on the monitor while cleaning. Do not allow water or cleaning solution to enter the connectors of jack cover.

Recommended cleaning agents:

Alcohol (Ethanol 70%, Iosopropanol 70%, Window cleaner)

Ammonias (Dilution of ammonia <3%, Window cleaner)

Tensides (dishwasher detergents) (Edisonite schnellreiniger[®], Alconox[®])

Cables and Leadwires

CAUTION

Do not use acetone or keytone solvents for cleaning; do not use an autoclave or steam cleaner.

Cables and leadwires can be cleaned with a warm, damp cloth and mild soap, or isopropyl alcohol wipes. For more intensive disinfecting (near sterile) Ethylene Oxide (ETO) is acceptable but will reduce the useful lifetime of the cable or leadwire.

CAUTION

The decision to sterilize must be made per your institution's requirements with an awareness of the effect on the integrity of the cable or leadwire.

Note

The Equipment needs safety inspection once a year. Please refer to user's guide or service manual for the examine objects.

Please check carefully both frame and sensor, after cleaning the Equipment, Do not use the equipment that is worn out or damaged.

At least once a month, clean and wipe off the frame by using the soft cloth after wetting it with water and alcohol. Do not use lacquer, thinner, ethylene, and oxidizer which may leads damage to the equipment.

Make sure both cables and accessories are free of dust or contaminants, and wipe them off with soft cloth wetted with warm water (40°), and at least once a week, clean them by using the clinical alcohol.

Do not submerge the accessories under any liquid or detergent. Also, make sure any liquid not to penetrate into the Equipment or probe.

Disinfecting

Do not mix disinfecting solutions (such as bleach and ammonia) as hazardous gases may result.

Clean equipment before disinfecting.

Recommended disinfecting agents:

Aldehyde based (Cidex® activated dialdehyde solution, Gigasept)

Alcohol base (Ethanol 70%, Isopropanol 70%, Spitacid[®], Streilium fluid[®], Cutasept[®], Hospisept[®], Tinktur forte, Sagrosept[®], Kodan[®])

Caution

Do not dispose single use probe to any hazard place, Always think about environmental contamination.

Caution

There is back-up battery on board inside system. When users dispose this battery, Please waste proper place for environmental protection.

Warning

Check the electrodes of batteries before changing them.

- Operate BM5 (CS, CX) with internal electric power supply when unsure of external ground connection or installation occur.
- · Remove the 1st Battery when not using equipment for a while without any damage.

For other applied parts such as temperature sensors, pulse oximetry probes, and NBP cuffs, you must consult the manufacturer for cleaning, sterilization, or disinfecting methods.

1.3 Product Components

Product Outline

BM5 (CS, CX) monitor is a product used for monitoring biological information and occurrence of a patient. Main functions of the product include displaying information such as ECG, respiration, SpO2, NIBP, IBP, EtCO2 and temperature on its LCD screen and monitoring parameter, and alarming. It also prints out waves and parameters via a printer.

Principal Characters of Product

BM5 (CS, CX) is a small-size multifunctional monitoring equipment for a patient designed to an easy usage during movement. It features devices for DC power supply (DC 18V, MW160) as well as installing its handle to the patient's bed. The equipment also measures major parameters such as ECG, respiration rate, SpO2, pulse rate, NIBP, IBP, EtCO2, and temperature, displaying them on a 10.4-inch color LCD screen. It also enables users to check waves and parameters and other vital signs of a patient via the 58mm thermal printer and monitor the patient by the remote-controlled alarm system. It also enables to build a central monitoring system by linking devices used for separate patients so that one can monitor several patients at a time.

Warning

Use only the supplement accessories provided by us. Otherwise, patient and user may exposed to danger.

Warning

BEFORE USE — Before putting the system into operation visually inspect all connecting cables for signs of damage. Damaged cables and connectors must be replaced immediately. Before using the system, the operator must verify that it is in correct working order and operating condition. Periodically, and whenever the integrity of the product is in doubt, test all functions.

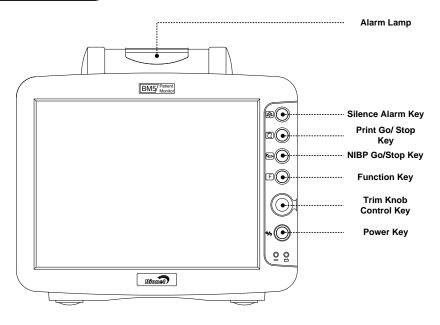
Product Configuration

1. Main body of BM5(CS, CX) Monitor	1 EA
2. 5-Lead ECG Cable	1EA
3. Disposable electrodes	10 EA
4. NIBP extension tube	1EA
5. Reusable Adult NIBP Cuff	1EA
6. SpO2 sensor extension cable	1EA
7. Reusable Adult SpO ₂ Probe	1 EA
8. DC Adaptor (MW160 made in AULT Co., Ltd.)	1 EA
9. Chart Paper	2ROLL

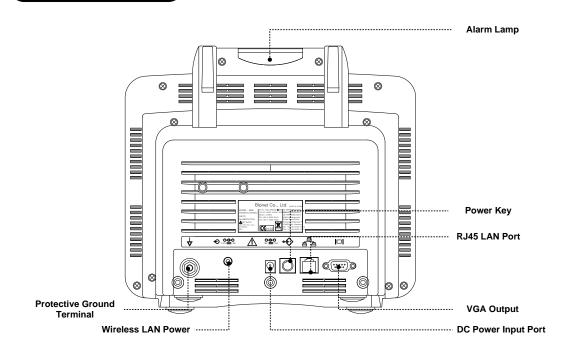
Option Product

- 1. Temperature probe
- 2. 3-Lead ECG Cable (MECA3(AHA), MECE3(IEC))
- 3. 10-Lead ECG Cable (MECA10(AHA), MECE10(IEC))
- 4. IBP kit
- 5. EtCO2 Module

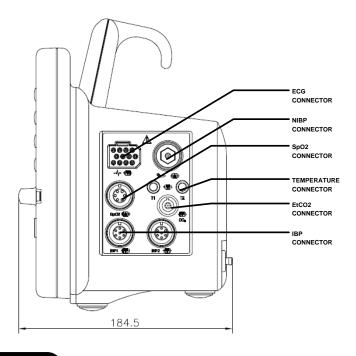
Warning

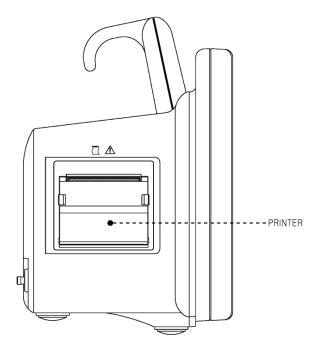

In order to avoid electrical shock, do not open the cover. Disassembling of the equipment should be done only by the service personnel authorized by BIONET

Warning


Users must pay attention on connection any auxiliary device via LAN port or nurse calling. Always consider about summation of leakage current, please check if the auxiliary device is qualified by IEC 60601-1, or consult your hospital biomedical engineer.

Features of Main Body




BACK

Right Side

Left Side

Accessories

ECG Cable +
Extension Cable

SpO₂ Cable + Extension Cable

NIBP Cuff+ Extension cable

Temperature sensor (Option)

Equipment Sign


ATTENTION:

Consult accompanying documents

Defibrillator-proof TYPE CF APPLIED PART:

Insulated (floating) applied part suitable for intentional external and internal application to the patient including direct cardiac application. "Paddles" outside the box indicate the applied part is defibrillator proof.

F-type applied part(floating/insulated) complying with the specified requirements of IEC 60601-1/UL 2601-1/CSA 601.1

Medical Standards to provide a higher degree of protection against electric shock tan that provided by type BF applied parts.

Defibrillator-proof TYPE BF APPLIED PART:

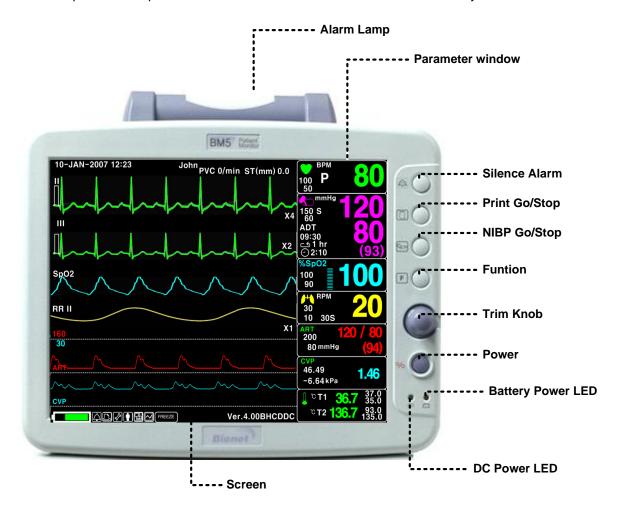
Insulated (floating) applied part suitable for intentional external and internal application to the patient excluding direct cardiac application. "Paddles" outside the box indicate the applied part is defibrillator proof.

Medical Standard Definition:

F-type applied part (floating/insulated) complying with the specified requirements of IEC 60601-1/UL 2601-1/CSA 601.1

Medical Standards to provide a higher degree of protection against electric shock than that provided by type B applied parts.

BM5 (CS,CX) User's Manua	a
--------------------------	---


	Ground
	Printer
	Serial Port
	LAN Port
\longleftrightarrow	AUX Connector Port
	DC Input Indicator
- +	Battery Operation Indicator
18V === 2.5V	DC Input Connector
	NIBP
Τ	Temperature

BM5 (CS,CX) User's Manual				
F	Function			
•	Power on			
	Power off			
14	Respiration			
$\checkmark\!$	ECG			
	Heart Pulse			
PR	Pulse Rate			
	ALARM OFF			

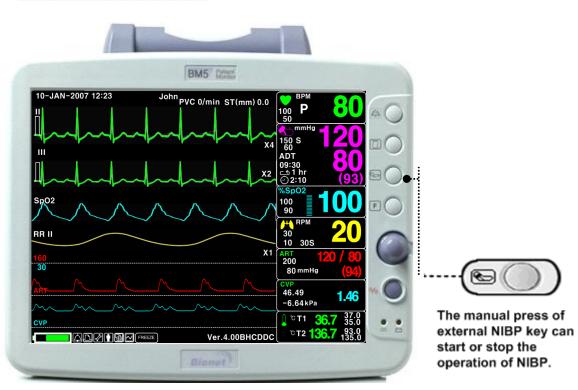
1.4 Function and Key

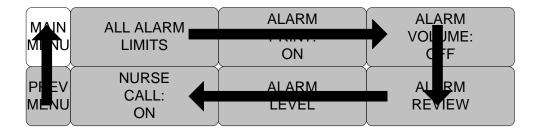
External Function

The front panel of this product consists of an LCD screen and five function keys and one trim knob.

Operation Key

- 1. Power: Switches on and off the Power.
- 2. Function Key
- 3. Blood Pressure: Manually completes measuring blood pressure.
- 4. Printer: Prints out the waves selected from the menu until the key is pressed to stop.
- 5. Alarm: Stop alarm sound.

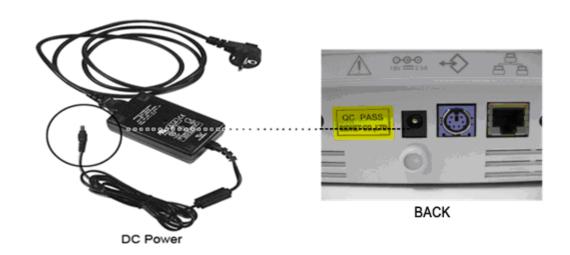

First press stops the current alarm for one minute

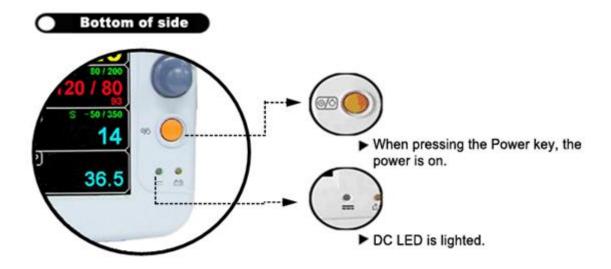

Second press stops the all alarm for five minutes.

Third press makes the alarm back to the original setting.

6. Trim Knob: This key is used to select menu by turning it clock or anticlockwise to move cursors.

NIBP KEY





1.5 Standard Power Supply Application

DC Power

DC Power LED is lighted on when the DC Power is plugged into the inlet at the back of the product. A press of power key makes the machine ready for use.

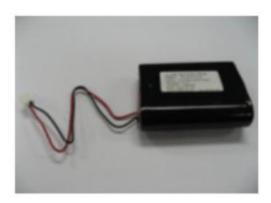
Warning

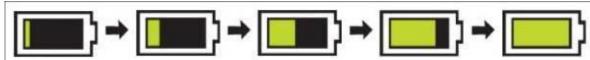
This equipment must only be connected to a supply mains with protected earth.

1.6 Battery Power Supply Application

Battery power can be supplied for enabling a portable use or a use during DC power failure.

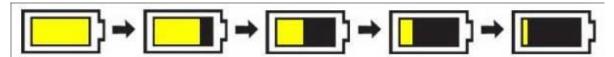
Operation

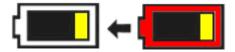

- 1. Battery Power LED is lighted on when the machine is in use.
- 2. The DC/battery power is only sustainable for 1 hour.
- 3. Battery is automatically charged when the machine is connected to


DC Power Supply. Battery LED is lighted on after blinking.

- 4. The charging status of the batteries is displayed with 5 green boxes, each indicating a different charging
- . (0% -> 25% -> 50% -> 75% -> 100%)
 - Battery: ICR18605 22F-031PpTC (10.8V 2200mA, Li-ion)

The Lithium-Ion battery is a rechargeable battery containing Lithium-Ion cells. Each battery contains an integrated electronic fuel gauge and a safety protection circuit.




5. The discharge condition of battery is indicated with on of 5 yellow boxes, each box showing a different level of charge available.

.

(100% -> 75% -> 50% -> 25% -> 0%)

When remained battery is less than 25%, the battery icon box is turned to red one with blink. The device will be turned off automatically after 5 minutes from that warning sign. In case of that warning sign with red and blink at icon box, charge the device immediately with DC power adaptor which is provided from BIONET.

- -Battery charging time: More than 6 hours
- -Continuous battery use time: Lowest 1 hour to highest 2 hours continuous use (buffering)

Warning

Check the electrodes of batteries before charging them.

6. Battery status indication: When battery is apart from equipment and out of order, it is shown by a red `X' as shown below.

7. Low power supply: When you use the power of less than 16V, the battery indication disappears and the "LOW" indication is active.

Display of LOW power supply

Note

Battery is not charged when the automobile power is used.

The Impact of Lithium-Ion Battery Technology on the Battery

The following are the key points you should know about Lithium-Ion battery technology:

The battery will discharge on its own, even when it is not installed in a monitor. This discharge is the result of the Lithium-Ion cells and the bias current required for the integrated electronics.

By the nature of Lithium-Ion cells, the battery will self-discharge.

The self-discharge rate doubles for every 10°C (18°F) rise in temperature.

The capacity loss of the battery degrades significantly at higher temperatures.

As the battery ages, the full-charge capacity of the battery will degrade and be permanently lost. As a result, the amount of charge that is stored and available for use is reduced.

Conditioning Guideline

the battery in the monitor full charged and discharged every six months and condition it using the battery charger.

Storage Guideline

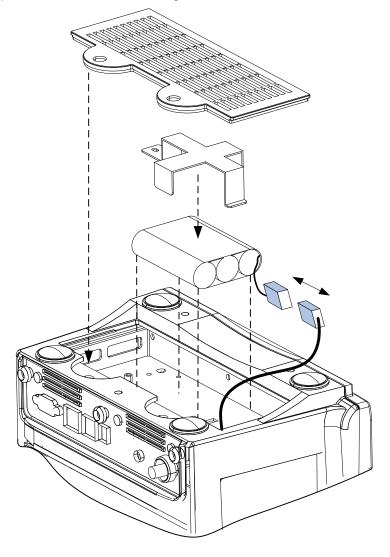
Store the battery outside of the monitor at a temperature between 20°C to 25°C (68°F to 77°F).

When the battery is stored inside a monitor that is powered by an AC power source, the battery cell temperature increases by 15°C to 20°C (59°F to 68°F) above the room's ambient temperature. This reduces the life of the battery.

When the battery is stored inside a monitor that is continuously powered by an AC power source and is not powered by battery on a regular basis, the life of the battery may be less than 12 months. BIONET recommends that you remove the battery and store it near the monitor until it is needed for transport.

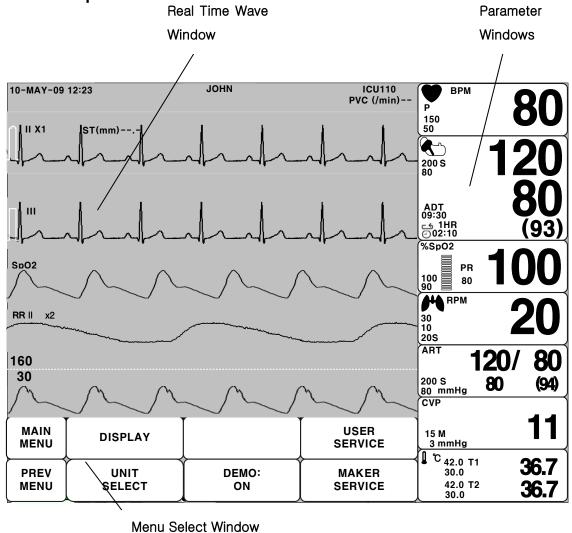
How to Recycle the Battery

When the battery no longer holds a charge, it should be replaced. The battery is recyclables. Remove the old battery from the monitor and follow your local recycling guidelines.


WARNING

EXPLOSION HAZARD —

DO NOT incinerate the battery or store at high temperatures. Serious injury or death could result.


To insert and remove the battery pack.

Assembly or replacement, as shown in the figure below.

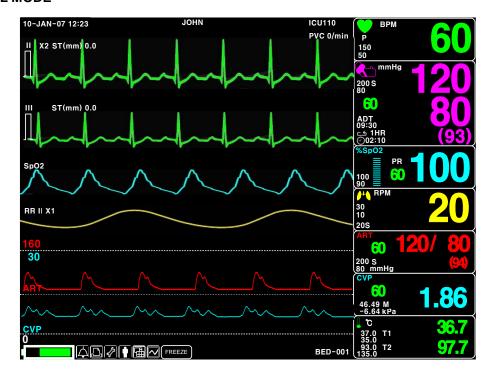
1.7 General Manu Operation

Screen Composition

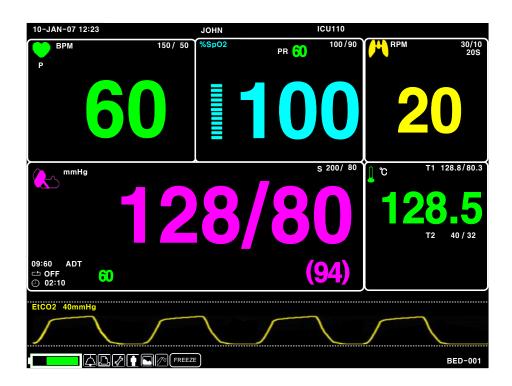
Real Time Wave Window: Displays measured results by up to three waves.

Menu Select Window: Menus appear when they are activated...

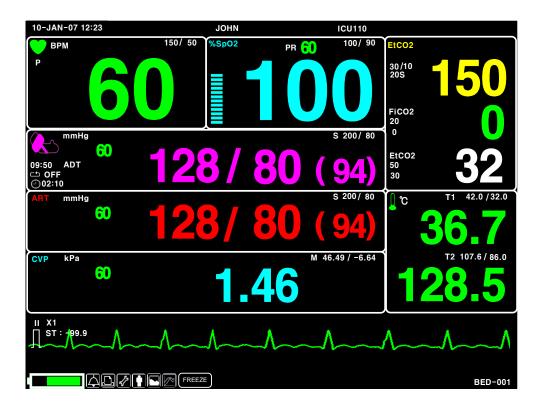
Parameter Window: Measured and setup data are displayed in five windows.

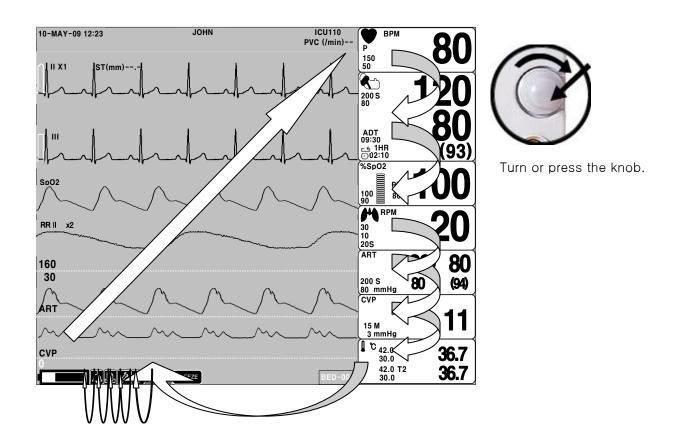

Display mode are consist of three mode.

NORMAL MODE: It display with waveform and parameter value.


BASIC PARAMETER MODE: It display with basic numeric value.

FULL PARAMETER MODE: It display with all numeric value.


NORMAL MODE

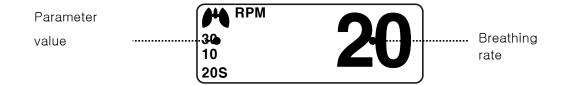

BASIC PARAMETER MODE

FULL PARAMETER MODE

Menu Selection

When the Trim Knob Key is turned, menus are selected in the order indicated above. The above screen shows that the MORE menus is selected. The menus move to the right in the order of MORE MENU \rightarrow ECG \rightarrow NIBP \rightarrow SpO2 \rightarrow RESP(EtCO2) \rightarrow IBP1 \rightarrow IBP2 \rightarrow TEMP. An inactivated window is jumped off.

Menu Composition


More Menu Window

When the additional menu is selected it will set and cancel the functions.

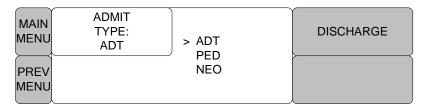
MAIN MENU	DISPLAY		USER SERVICE
PREV MENU	KEY SOUND: ON	DEMO: ON	MAKER SERVICE

Numerical value sign widow

This window displays a measured parameter, function setup, and the boundary of parameter values.

Menu selection by using Trim Knob key

As the key is turn to the right, the menu selection moves clockwise. As the key is turn to the left, the menu selection moves counterclockwise. The menu selection is activated when you depress Trim Knob key.

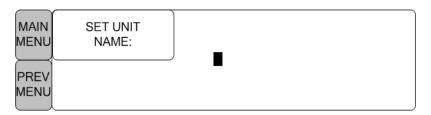

MAIN MENU	DISPLAY		USER SERVICE
PREV	KEY SOUND: ON	DEMO : ON	MAKER SERVICE

Menu selection with arrows

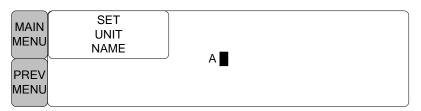
Upward Movement: Turns the Trim Knob key to the left.

Downward Movement: Turns the Trim Knob key to the right.

Selection is made by pressing the Trim Knob key. One comes out of the menu after the selection.

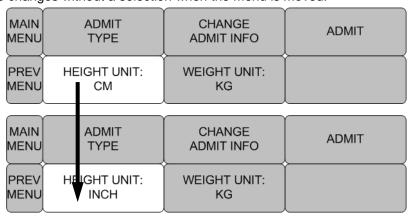


When moving the within quadrilateral, the letter reverses, and the numeric value reflects immediately.


MAIN MENU QRS VOLUME : PREV MENU	>	OFF 10% 20% 30% 40% 50%	60% 70% 80% 90% 100%	
-----------------------------------	---	--	----------------------------------	--

Word feature menu

The following figure shows the screen where the word sequence menu is activated within the word sequence correction menu. Here, the cursor moves over the words when the Trim Knob key is turned in the clockwise direction.


The above figure shows how the cursor moves on the screen. The cursor moves according to the direction the Trim Knob Key is turned. Press the Trim Knob key if you want to change a letter currently on the screen.

The above figure shows how the cursor is selected to change a letter. Right-hand turning of the Trim Knob Key makes it possible to select in the order of 0-9,A-Z, and a blank, while left-hand turning makes the movement in the opposite direction. Once a letter or a number is selected, the screen comes back to the condition where the same process of selection can be made. One may move to the menu item in the left of the screen to end the process, which is completed by pressing Trim Knob Key. After completion, the screen comes back to the earlier picture.

Operation menu

The setup value changes without a selection when the menu is moved.

2. PATIENT/DATA MANAGEMENT

2.1 ADMIT

CHANGE ADMIT INFO
DISCHARGE
HEIGHT
WEIGHT

2.2 ALARM

ALL LIMITS
ALARM PRINT
ALARM VOLUME
ALARM LEVEL
ARRHYTH LEVEL
ALARM REVIEW
ALARM LIST
SAVE ALARM LEVEL
NURSE CALL

Additional setups are made foe each parameter function. One can make an overall setup for the entire monitor system.

2.1 ADMIT

CHANGE ADMIT INFO DISCHARGE HEIGHT UNIT WEIGHT UNIT DEFAULT SETTING DRUG CAL.

MAIN MENU	ADMIT TYPE: ADT	CHANGE ADMIT INFO	DISCHARGE
PREV MENU	DRUG CAL.	UNITS	DEFAULT SETTING

ADMIT TYPE

Set the exercise environment of equipment in discharge status.

ADU: ADULT ICU // PED: PEDIATRIC ICU // NEO: NEONATE ICU

MAIN MENU	ADMIT TYPE: ADT	CHANGE ADMIT INFO	ADMIT
PREV MENU	DRUG CAL.	UNITS	DEFAULT SETTING
MAIN MENU	ADMIT TYPE: ADT	> ADT PED	ADMIT
PREV MENU		NEO	DEFAULT SETTING

CHANGE ADMIT INFO

Last and first name (11 letters for each), sex (male or female), date of birth, weight, height, and patient ID (11 characters)

MAIN	ADMIT TYPE: ADT	CHANGE ADMIT INFO	DISCHARGE
PREV	DRUG CAL.	UNITS	DEFAULT SETTING

	CHANGE ADMIT INFORMATION		
> RETURN	CONTENTS		
LAST NAME	JOHN		
FIRST NAME	WASHINGTON		
PATIENT ID	APC001		
SEX	MALE		
BIRTH DATE	27 – JAN - 1978		
AGE	31		
HEIGHT	177.0 CM		
WEIGHT	62.0KG		

DISCHARGE

Patient information and all numbers change to standard, and the screen displays, "ALL ALARMS OFF ADMIT PATIENT TO ACTIVE ALARMS."

MAIN MENU	ADMIT TYPE: ADT	CHANGE ADMIT INFO	DISCHARGE
PREV MENU	DRUG CAL.	UNITS	DEFAULT SETTING
MAIN MENU	ADMIT TYPE: ADT	DISCHARGE	> NO
PREV MENU	DRUG CAL.		YES

ADMIT

MAIN MENU	ADMIT TYPE: ADT	CHANGE ADMIT INFO	ADMIT
PREV MENU	DRUG CAL.	UNITS	DEFAULT SETTING
MAIN MENU	ADMIT TYPE: ADT	ADMIT	> NO
PREV MENU	DRUG CAL.		YES

HEIGHT

Unit of height is set as Cm / Inch.

MAIN MENU	ADMIT TYPE : ADT	CHANGE ADMIT INFO	ADMIT
PREV MENU	DRUG CAL.	UNITS	DEFAULT SETTING
MAIN MENU	WEIGHT: KG	HEIGHT: CM	
PREV MENU			
MAIN MENU	WEIGHT: KG	HEIGHT: INCH	
PREV MENU			

WEIGHT

Unit of weight is set as Kg / LBS.

MAIN	WEIGHT:	HEIGHT:	
MENU	KG	CM	
PREV MENU			
MAIN	WEIGHT:	HEIGHT:	
MENU	LBS	CM	
PREV MENU			

DEFAULT SETTING

Register default values of patient information and alarm setting.

MAIN MENU	ADMIT TYPE: ADT	CHANGE ADMIT INFO	ADMIT
PREV	DRUG	UNITS	DEFAULT
MENU	CALCS		SETTING

DRUG CALCULATION

Menu to calculate drug dosage.

MAIN MENU	ADMIT TYPE: ADT	CHANGE ADMIT INFO	ADMIT
PREV	DRUG	UNITS	DEFAULT
MENU	CALCS		SETTING
MAIN	CHANGE	TITRATION	
MENU	VALUE	TABLE	
PREV MENU	DRUG QTY RANGE: 0.01~100		

CHANGE VLAUE

Menu to set parameters for calculating drug dosage: drug name, weight, solution volume, drug QTY, INF. rate(DOSE/MIN, DOSE/HR, DOSE/KG/MIN, INF RATE, DIRP RATE, DROP SIZE, INF TIME), etc.

MAIN	CHANGE	TITRATION	
MENU	VALUE	TABLE	
PREV	RANGE.		

DOSE CALCULATIONS:					
RETURN UNITS LEVEL					
DRUG NAME		AMINOPHYLLINE			
WEIGHT	KG	60.0KG			
SOL VOLUME	ml	250			
DRUG QTY	mg	500			
DOSE/MIN	mg	0.01			
DOSE/HR	mg	0.50			
DOSE/KG/MIN	mcg	0.00			
INF RATE	ml/Hr	0.00			
DRIP RATE	GTT/MIN	О			
DROP SIZE	GTT/ml	60			
INF TIME		OHRS OMIN.			

TITRATION TABLE

Rev. 3.1

Display calculated drug dosage in a titration table using parameters such as drug name, weight, solution volume,drug QTY, INF. rate(DOSE/MIN, DOSE/HR, DOSE/KG/MIN, INF RATE, DIRP RATE, DROP SIZE, INF TIME), etc.

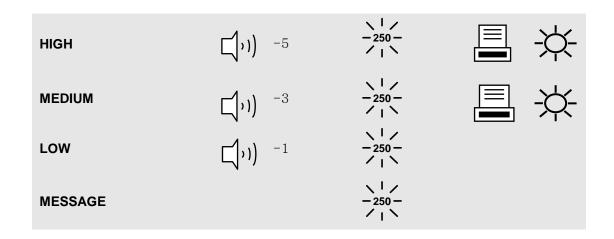
MAIN	CHANGE	TITRATION	
MENU	VALUE	TABLE	
PREV	DRUG QTY RANGE: 0.01~100		

TITRATION TABLE: AMINOPHYLLINE				
RETURN	SOL VOLUME: 25	DOSE QTY: 500		
DOSE	INF RATE	DOSE	INF RATE	
mg/hr	ml/Hr	mg/hr	ml/Hr	
0.00	0.00	0.60	0.30	
0.00	0.00	0.70	0.35	
0.00	0.00	0.80	0.40	
0.00	0.00	0.90	0.45	
0.10	0.05	1.00	0.50	
0.20	0.10	1.10	0.55	
0.30	0.15	1.20	0.60	
0.40	0.20 1.30		0.65	
0.50	0.00 1.40		0.70	

DRUG QTY RANGE

Menu to set parameters for calculating drug quantity range: drug name, weight, solution volume, drug QTY, INF. rate(DOSE/MIN, DOSE/HR, DOSE/KG/MIN, INF RATE, DIRP RATE, DROP SIZE, INF TIME), etc.

MAIN MENU	CHANGE VALUE	TITRATION TABLE	
PREV MENU	DRUG QTY RANGE: 0.01~100		
MAIN MENU PREV MENU	DRUG QTY RANGE: 0.01~100	> 0.01~100 100~1000 1,000~10,000 10,000~	


Drug Initial setting table

Drug Name	Drug QTY	Solution Volume	Dose
AMINOPHYLLINE	500 mg	250 mL	0.50 mg/hr
BRETYLIUM	1000 mg	250 mL	1.00 mg/min
DOPAMINE	800 mg	500 mL	2.00 mcg/kg/min
DOBUTAMINE	500 mg	250 mL	2.50 mcg/kg/min
HEPARIN	25000 units	1000 mL	1000 units/hr
NITROGLYCERIN	50 mg	250 mL	0.50 mcg/kg/min
NITROPRUSSIDE	50 mg	250 mL	0.50 mcg/kg/min
EPINEPHRINE	1 mg	250 mL	1.00 mcg/min
LIDOCAINE	2000 mg	500 mL	2.00 mcg/min
PROCAINAMIDE	2000 mg	500 mL	2.00 mcg/min
INSULIN	100 units	500 mL	1.00 units/hr
LEVOPHED	4 mg	250 mL	2.00 mcg/min
ISOPROTERENOL	1 mg	250 mL	0.50 mcg/min
INOCOR	500 mg	500 mL	5.00 mcg/kg/min
STREPTOKINASE	1500000 IU	50 mL	30000 IU/hr
TPA	100 mg	100 mL	60.00 mg/hr
DRUG A TO D	1 mg	1 mL	1mcg/kg/min

2.2 ALARM

Alarm is divided into two, alarm for the patient's condition and for the product's condition.

The patient's alarm sounds when the diagnostic functions (ASYSTOLE, VTAC/VFIB, and VTAC) are detected. Each alarm sound differs in order in order and volume according to the levels of HIGH, MEDIUM, LOW and MESSAGE.

: Alarm sounds

: Number flashes

: Waves are printed out

: Alarm lamp flashes

Alarm for the Product

The machine gives alarm sounds for its system with a related message flashing.

二,1) LOW

ALARM LIMITS: The machine enables one to see and change the limits of alarm for all parameter functions.

ALARM PRINT: with an ON/OFF setup, the related information is printed out whenever an alarm is given.

ALARM VOLUME: volume of each alarm can be adjusted in 10 step.

ALARM LEVEL: Priority of each parameter alarm can be set up.

ALARM REVIEW: Shows the priority order information for all alarms of each measurement.

NURSE CALL: Set the ON/OFF feature of the NURSE CALL.

MAIN MENU	ALARM	ALARM PRINT: ON	ALARM VOLUME: OFF
PREV	NURSE	ALARM	
MENU	CALL	REVIEW	

It is able to see all the alarm range and change of measurement function.

ALL LIMITS

MAIN MENU	ALARM	ALARM PRINT: ON	ALARM VOLUME: OFF
PREV MENU	NURSE CALL	ALARM REVIEW	
MAIN MENU	ALL ALARM LIMITS	ARRHYTH LEVEL	
PREV MENU			

ALL ALARM LIMIT & LEVEL					
RETURN	UNITS	LOW	HIGH	ALARM ON/OFF	LEVEL
HR	BPM	50	150	ON	HIGH
SPO2-%	%	90	100	ON	MEDIUM
SPO2-R	BPM	50	150	OFF	MEDIUM
RESP	RPM	10	30	OFF	LOW
RESP-A	SEC	0	20	OFF	HIGH
NIBP-S	mmHg	80	200	ON	MEDIUM
NIBP-M	mmHg	40	140		
NIBP-D	mmHg	20	120		
TEMP1	°C	30.0	42.0	OFF	MESSAGE
TEMP2	°C	30.0	42.0	OFF	MESSAGE
ST	mV	-1.0	1.0	OFF	MESSAGE
PVC	/min	0	20	OFF	MESSAGE
IBP1-S	mmHg	80	200	OFF	MESSAGE
IBP1-M	mmHg	40	140		MESSAGE
IBP1-D	mmHg	20	120		MESSAGE
IBP2-S	mmHg	0	300	OFF	MESSAGE
IBP2-M	mmHg	3	15		MESSAGE
IBP2-D	mmHg	0	300		MESSAGE
EtCO2	UNITS	25	50	OFF	MESSAGE
FiCO2	UNITS	0	5	OFF	MESSAGE
EtCO2 - A	SEC	0	20	OFF	MESSAGE
LEAD FAULT	UNITS			OFF	MESSAGE
LOW BATTERY	UNITS			OFF	MESSAGE

ALARM PRINT

Set ON/OFF functions automatically. When the alarm is activated the corresponding information is printed on heat sensitive paper. Alarm level upper than MEDIUM Level. But, LEAD FAULT AND LOW BATTERY Alarm isn't activated the alarm print when alarm is set.

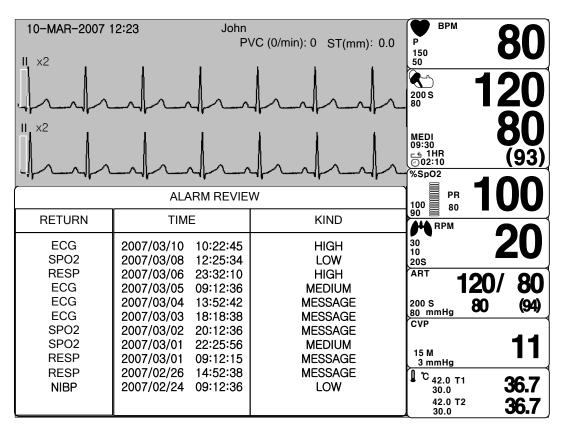
MAIN MENU	ALARM	ALARM PRINT: ON	ALARM VOLUME: OFF
PREV	NURSE	ALARM	
MENU	CALL	REVIEW	

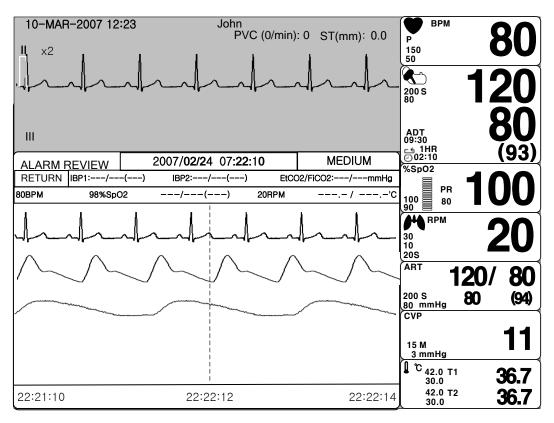
ALARM VOLUME

Set the alarm volume to be set at 10 grades.

MAIN MENU	ALARM	ALARM PRINT: ON	ALARM VOLUME: OFF
PREV MENU	NURSE CALL	ALARM REVIEW	
MAIN MENU PREV MENU	ALARM VOLUME: OFF	> OFF 10% 20% 30% 40% 50%	60% 70% 80% 90% 100%

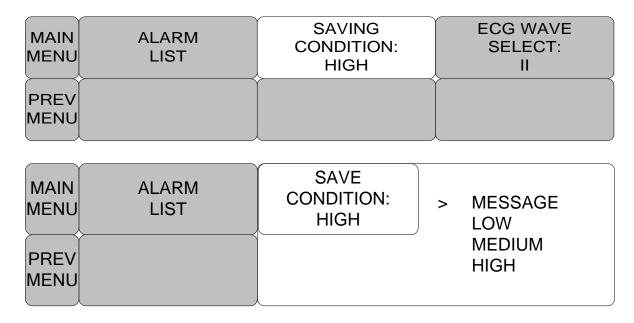
ALARM REVIEW


After an alarm is triggered the alarms and data wave pattern can be reviewed. Set up for priority of each parameter alarm.


MAIN MENU	ALARM	ALARM PRINT: ON	ALARM VOLUME: OFF
PREV MENU	NURSE CALL	ALARM REVIEW	
MAIN MENU	ALARM LIST	SAVING CONDITION: HIGH	ECG WAVE SELECT: II
PREV MENU			

ALARM LIST

When an alarm activates, this shows the order of the alarms.



SAVING CONDITION

This determines the alarm level of parameters which are saved in the alarm list, when alarm occurs. If the higher level of alarm only occurs than the previously determined alarm level, data would be saved in the alarm list.

ECG WAVE SELECT (ALARM LIST ECG LEAD SELECT)

This set ECG LEAD which is indicated in the saved alarm list.

MAIN MENU	ALARM LIST	CO	AVING NDITION: HIGH	_	G WAVE ELECT: II
PREV MENU					
MAIN MENU PREV MENU	ECG WAVE SELECT: II	>	I II III aVR aVL aVF	V1 V2 V3 V4 V5 V6	

ARRHYTH LEVEL

This set alarm level in arrhythmias analysis.

MAIN MENU	ALARM	ALARM PRINT: ON	ALARM VOLUME: OFF
PREV MENU	NURSE CALL	ALARM REVIEW	
MAIN MENU	ALL ALARM LIMITS	ARRHYTH LEVEL	
PREV MENU			

ARRHYTH ALARM LEVEL			
RETURN MESSAGE			
ASYSTOLE	HIGH		
VTAC	HIGH		
VTAC/VFIB	HIGH		
BIGEMINY	MESSAGE		
ACC VENT	MESSAGE		
COUPLET	MESSAGE		
IRRGULAR	LOW		
PAUSE	LOW		
PVC	MESSAGE		
R ON T	MESSAGE		
TRIGEMINY	MESSAGE		
V BRADY MEDIUM			
SHORT RUN	MEDIUM		

NURSE CALL

When an alarm is triggered, this activated the NURSE CALL function.

MAIN MENU	ALARM	ALARM PRINT: ON	ALARM VOLUME: OFF
PREV	NURSE	ALARM	
MENU	CALL	REVIEW	

- 1. NURSE CALL: ON/OFF
 - Nurse call function on off setting
- 2. NORMAL MODE:
 - NORMAL OPEN: Selection mode when the nurse call system in an open state by default In the hospital.
- NORMAL CLOSE: Selection mode when the nurse call system in an close state by default In the hospital.
- 3. CALL MODE:

- ONE TIME: When an alarm occurs, occurs 3seconds of nurse call, and after stopping
- CYCLING: When an alarm occurs, repeat the nurse call signal every 1seconds. Maintain the patient's condition returned to normal, or until you stop the alarm by nurse.
- CONTINUE: When an alarm occurs, the call to generate a signal continuously for one minute. Stop after one minute call or called by the nurse to stop, stop.

NURSE CALL SETUP			
RETURN	CONTENTS		
NURSE CALL	OFF		
NORMAL MODE	NORMAL OPEN		
CALL MODE	ODE ONE TIME		

3. SETUP

3.1 SETUP

DISPLAY

DEMO

USER SERVICE

MAKER SERVICE

Rev. 3.1 3.SETUP 69

3.1 SETUP

DISPLAY: screen set menu

KEY SOUND: This is the menu to set the key sound generation.

USER SERVICE: This is the menu to set the connection used to interface with an external

computer.

DEMO: This is the menu to set the demonstration.

MAKER SERVICE : This is the basic adjustment menu used to adjust the features of this product.

MAIN MENU	DISPLAY	KEY SOUND: OFF	USER SERVICE
PREV	UNIT	DEMO:	MAKER
MENU	SELECT	ON	SERVICE

DISPLAY

SET PARA: Measurement function selected.

WAVE SELECT: Set wave pattern source at the bottom of the WINDOW with LARGE

SET DATE & TIME: Set and change date and time. HR/PR SOURCE: Set and select HR/PR source. COLOR SELECT: Set screen display color.

SET SWEEP: Set speed of ECG, RESP WAVE DISPLAY

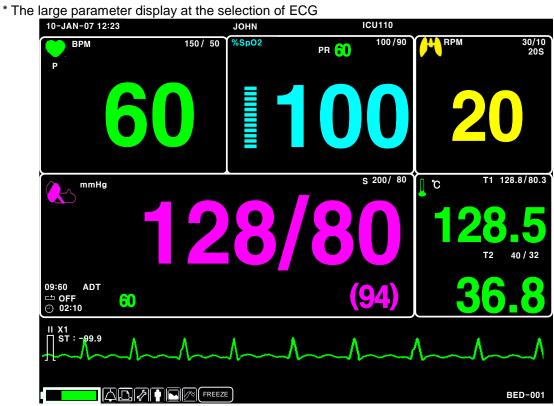
MAIN MENU	SET PARA	WAVE SELECT: ECG	SET DATE & TIME
PREV	SWEEP SPEED: 25mm/s	COLOR SELECT	HR SOURCE: ECG

SET PARA

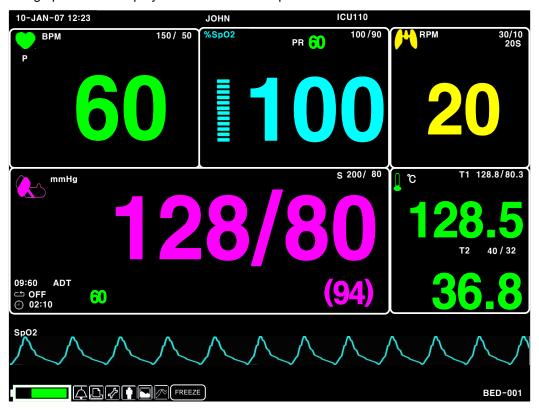
Select measurement function to use

MAIN MENU	SET PARA	WAVE SELECT: ECG	SET DATE & TIME
PREV MENU	SWEEP SPEED: 25mm/s	COLOR SELECT	HR SOURCE: ECG

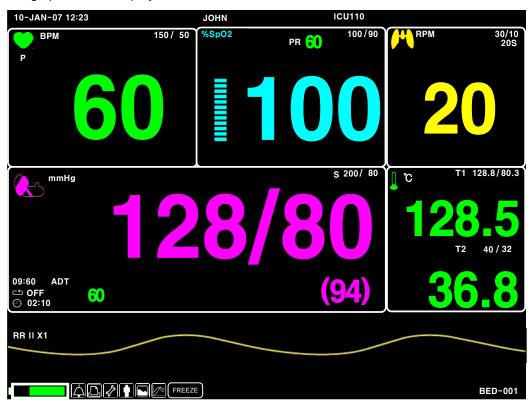
Rev. 3.1 3.SETUP 70

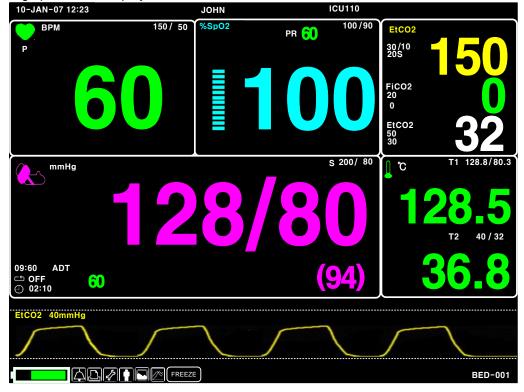

PARAMETER WINDOW SET			
RETURN	WINDOW ON/OFF		
ECG	ON		
SPO2	ON		
RESP	OFF		
NIBP	OFF		
TEMP	ON		
IBP I	ON		
IBP II	ON		
ETCO2	ON		
l			

WAVE SELECT


Select waveform to display in large parameter display.

MAIN MENU	SET PARA	WAVE SELECT: ECG	SET DATE & TIME
PREV MENU	SWEEP SPEED: 25mm/s	COLOR SELECT	HR SOURCE: ECG
MAIN MENU	SET PARA	WAVE SELECT: SPO2	> ECG SPO2 RESP
PREV MENU	SWEEP SPEED: 25mm/s		IBP1 IBP2 EtCO2


Rev. 3.1 3.SETUP 71


* The large parameter display at the selection of SpO2

* The large parameter display at the selection of RESP

* The large parameter display at the selection of EtCO2

SET DATE & TIME

It has sub menu to set date and time.

MAIN	SET PARA	WAVE SELECT:	SET
MENU		ECG	DATE & TIME
PREV	SET SWEEP: 25mm/s	COLOR SELECT	HR/PR SELECT: ECG

SET TIME

Set time of equipment.

MAIN MENU	SET TIME	SET DATE	
PREV			
MAIN MENU PREV MENU	SET TIME:	10:58:01	

SET DATE

Set date of equipment

MAIN MENU	SET TIME	SET DATE	
PREV MENU			

COLOR SELECT

This is the menu to set the waveform and parameter color selection.

It has ten color below table.

The color of parameter could be changed in ten colors from following table.

HR/PR SELECT

This menu is used to set the source that detects heart and pulse rate.

The source can select among ECG and SPO2.

MAIN MENU	SET PARA	WAVE SELECT: ECG	SET DATE & TIME
PREV MENU	SWEEP SPEED: 25mm/s	COLOR SELECT	HR/PR SELECT: ECG
MAIN MENU	SET PARA	HR/PR SELECT: ECG	> ECG SPO2
PREV MENU	SWEEP SPEED: 25mm/s		3PO2

SET SWEEP

Set speed of drawing wave signal pattern in this widow.

MAIN MENU	SET PARA	WAVE SELECT: ECG	SET DATE & TIME
PREV MENU	SWEEP SPEED: 25mm/s	COLOR SELECT	HR/PR SELECT: ECG
MAIN MENU	SET SWEEP:	> 6.25 mm/s 12.5 mm/s	SET DATE & TIME
PREV MENU		25 mm/s 50 mm/s	HR/PR SELECT: ECG

DEMO

Set ON/OFF DEMONTRATION of equipment.

MAIN MENU	DISPLAY	KEY SOUND: ON	USER SERVICE
PREV	UNIT	DEMO:	MAKER
MENU	SELECT	ON	SERVICE

KEY SOUND

This is the menu for KEY SOUND to ON/OFF.

MAIN MENU	DISPLAY	KEY SOUND: ON	USER SERVICE
PREV	UNIT	DEMO:	MAKER
	SELECT	ON	SERVICE
MAIN MENU	DISPLAY	KEY SOUND: OFF	USER SERVICE
PREV	UNIT	DEMO:	MAKER
	SELECT	ON	SERVICE

UNIT SELECT

This is the menu for converting the units of BM5.

The units of parameters for pressure, ST LEVEL, Temperature are able to convert.

MAIN MENU	DISPLAY	KEY SOUND: OFF	USER SERVICE
PREV	UNIT	DEMO:	MAKER
MENU	SELECT	ON	SERVICE

Pressure unit selection menu

MAIN MENU	PRESS UNIT: mmHg	ST UNIT: mV	TEMP UNIT: °C
PREV MENU			
MAIN MENU	PRESS UNIT: kPa	ST UNIT: mV	TEMP UNIT: °C
PREV			
ST LEVEL un	nit selection menu		
MAIN MENU	PRESS UNIT: mmHg	ST UNIT: mV	TEMP UNIT: °C
PREV MENU			
IVILIVO			
MAIN MENU	PRESS UNIT: mmHg	ST UNIT: mm	TEMP UNIT: °C
MAIN	UNIT:	UNIT:	UNIT:
MAIN MENU PREV MENU	UNIT:	UNIT:	UNIT:
MAIN MENU PREV MENU	UNIT: mmHg	UNIT:	UNIT:
MAIN MENU PREV MENU Temperature	UNIT: mmHg Unit selection menu PRESS UNIT:	UNIT: mm ST UNIT:	TEMP UNIT:
MAIN MENU PREV MENU Temperature MAIN MENU PREV	UNIT: mmHg Unit selection menu PRESS UNIT:	UNIT: mm ST UNIT:	TEMP UNIT:

USER SERVICE

The user is able to set the communication parameters, power supply filter, and patient's age.

MAIN MENU	DISPLAY	KEY SOUND: OFF	USER SERVICE
PREV MENU	KEY SOUND: ON	DEMO : ON	MAKER SERVICE
MAIN MENU	SET UNIT NAME	SET BED NUMBER : 00A	
PREV MENU	SYSTEM	AC FILTER:	W-LAN:

SET UNIT NAME

Set up for Equipment name.

MAIN MENU	SET UNIT NAME	SET BED NUMBER : 001	
PREV MENU	SYSTEM	AC FILTER: 50HZ	W-LAN: ON
MAIN MENU PREV MENU	SET UNIT NAME:		

SET BED NUMBER

Set up for patient bed number.

Allowable setters are from 1 to 255.

MAIN MENU	SET UNIT NAME	SET BED NUMBER : 001	
PREV MENU	SYSTEM	AC FILTER: 50HZ	W-LAN: ON
MAIN MENU	SET UNIT NAME	SET BED NUMBER:	A0 1
PREV MENU	SYSTEM		AU

AC FILTER

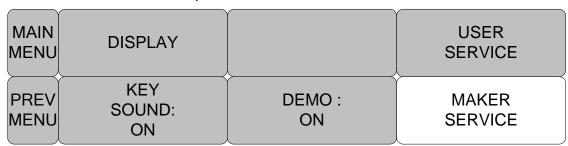
AC FILTER is function where you can set power supply frequency. This feature is required because power supply frequency can be different from one country to another. . (The selectable frequencies are 50Hz and 60Hz, OFF.)

MAIN MENU	SET UNIT NAME	AC FILTER 50HZ	> OFF 50HZ
PREV MENU	CVCIEM		60HZ

W-LAN

Power supplying of W-LAN module could be adjusted with this function.

MAIN MENU	SET UNIT NAME	SET BED NUMBER : 001	
PREV	SYSTEM	AC FILTER:	W-LAN:
MENU		50HZ	ON


SYSTEM

System able to change and verify Equipment version information and system information

	SYSTEM			
RETURN	CONTENTS			
MAIN VER	1.00.BHCDDCCAA			
EIA VER NBP VER	1.01 1.0			
CENTRAL HOST IP	ON 192 . 168 . 030 . 077			
DEVICE IP SUBNET	192 . 168 . 030 . 100 255 . 255 . 255 . 000			
GATEWAY MAC ADDR	192 . 168 . 030 . 001 00 : 02 : BD : 80 : CB : 00			
VGA OUTPUT	LCD			

MAKER SERVICE

Maker service is a menu is used by manufacturers.

FREEZE MENU

If you select the icon which is located in the far left in the icon menu with controlling a rotary switch, the wave window is held and is maintained as the previous status, at the same time the parameter windows is normally showing the current patient's status.

Whenever selecting the FREEZE menu, the FREEZE and RELEASE are repeated by turns.

The FREEZE is released by the following two conditions.

- 1. 3 minutes after selecting FREEZE menu.
- 2. Selection of the releasing FREEZE menu.

4. TREND

4.1 TREND

GRAPHIC TREND

TABLE TREND

TREND WINDOW SETUP

Rev. 3.1 4.TREND 82

4.1 TREND

TREND shows saved data graphically displayed with numeric values.

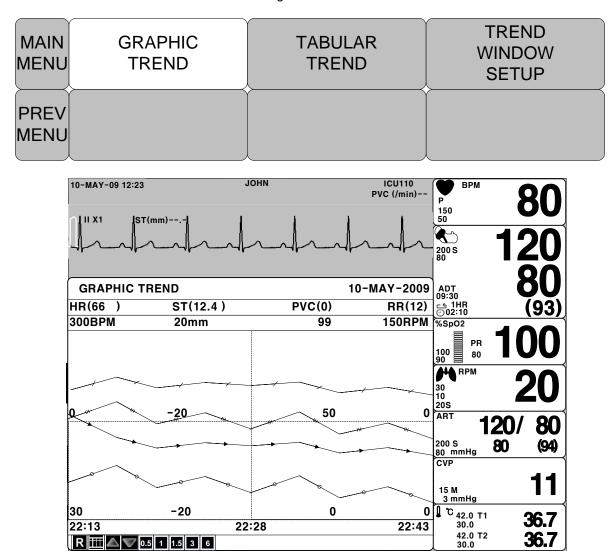
Real-time data recording duration is 1 minute. Amount of saving time is for this data will be saving for 168hours.

MAIN MENU	GRAPHIC TREND	TABULAR TREND	TREND WINDOW SETUP
PREV MENU			

R: Move to main screen

: Move within the tables

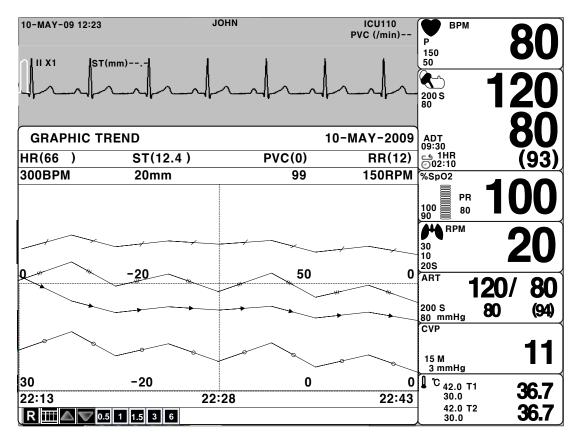
: Move up to other analysis function


: Move down to other analysis function

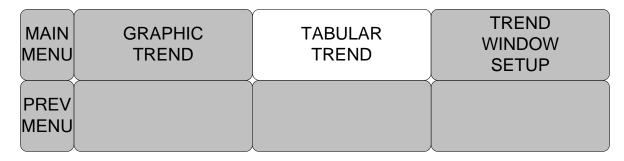
0.5 1 1.5 3 6 1 5 15 30 60 : Time period set menu

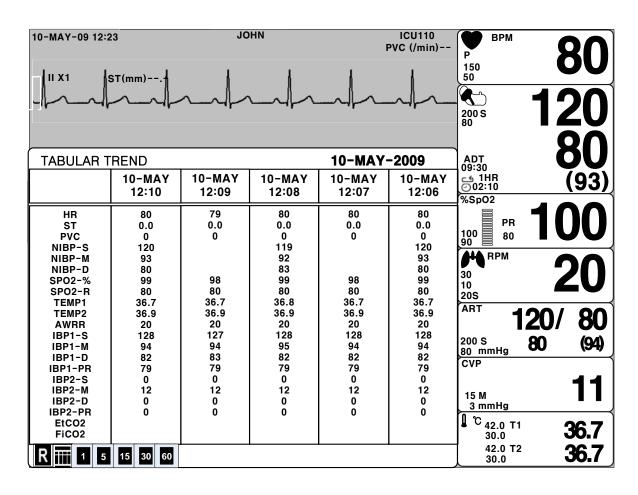
Rev. 3.1 4.TREND 83

GRAPHIC TREND


Wave Data can be stored and seen according to section.

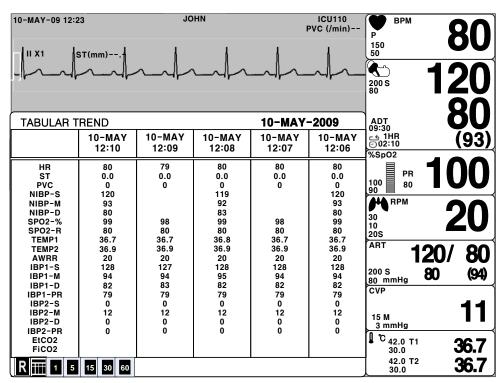
TIME PERIOD


One can set up and store data and time that one can see in a screen.



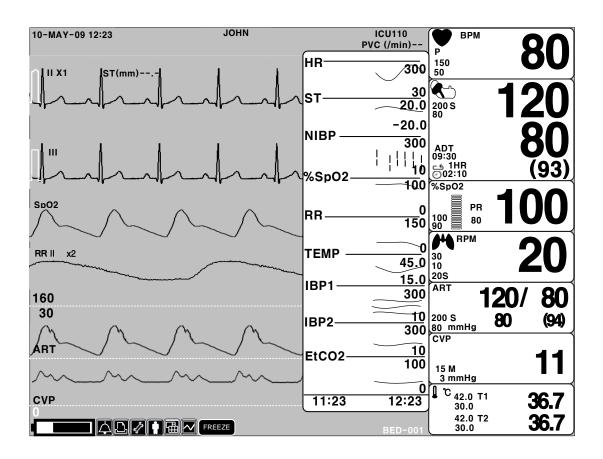
TABULAR TREND

One can see the stored data at the time previously set up.

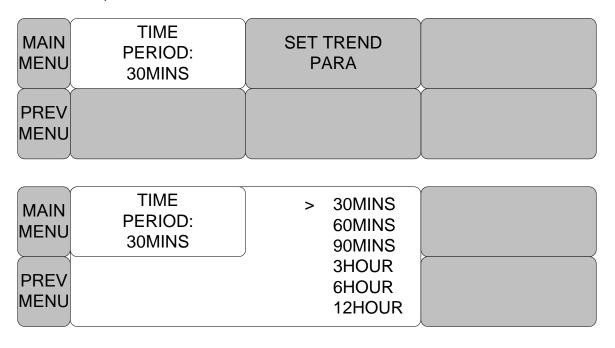


TIME INTERVAL

One can store data and set up time.



TREND WINDOW SETUP


Set the trend display window that will show the real time wave window.

MAIN MENU	GRAPHIC TREND	TABULAR TREND	TREND WINDOW SETUP
PREV MENU			

TIME PERIOD

Set visible time period in a screen.

SET TREND PARA

Set parameter for display in a screen.

MAIN MENU	TIME PERIOD: 30MINS	SET TREND PARA	
PREV MENU			

SET TREND PARA		
RETURN	ON / OFF	
HR	ON	
ST	ON	
SPO2	ON	
PR	ON	
RESP	ON	
NIBP	ON	
TEMP	ON	
IBP I	ON	
IBP II	ON	
ETCO2	OFF	

TREND PRINT

Graphic: select the number which selects a graphic trend and press print to prints the selected trend.

Table: select the table number to be print and press print to receive print all the data in the selected patient admit (Admit) table.

5. ECG

5.1 Outline

Color and Name for Each Cable Size

ECG Connector Location and Measurement Cable

5 Lead Electrode Attached Location

3 Lead Electrode Attached Location

Method to Attach Electrode to Baby

5.2 ECG Data Window

5.3 ECG Data Setup

TRACE 1 LEAD SELECT

ALARM LIMIT

ALARM

QRS VOLUME

ECG SIZE

HEART RATE SOURCE

ECG SPEED

ANALYSIS SETTING

5.1 Introduction

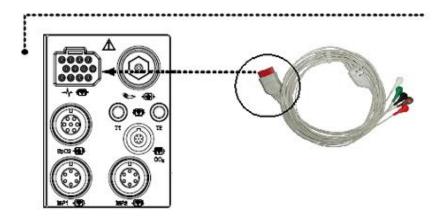
It calculates the heart rate with 3 or 5 leads or 10 leads ECG signal acquisition and perform the alarm according to the setting value.

Colors and Standards of Cables

AHA: American Heart Association (U.S.A. Certification)

IEC: International Electro technical Commission (Europe Certification)

3LEAD / 5LEAD


Loodusino	АНА	AHA	IEC	IEC
Leadwire	Color code	Label	Color code	Label
Right arm	White	RA	Red	R
Left arm	Black	LA	Yellow	L
Right leg	Green	RL	Black	N
Left leg	Red	LL	Green	F
V1(precordial)	Brown	V1	White	C1

10LEAD

Landonia	АНА	АНА	IEC	IEC
Leadwire	Color code	Label	Color code	Label
Right arm	White	RA	Red	R
Left arm	Black	LA	Yellow	L
Right leg	Green	RL	Black	N
Left leg	Red	LL	Green	F
V1(precordial)	Brown(Red)	V1	White(Red)	C1
V2	Brown(Yellow)	V2	White(Yellow)	C2
V3	Brown(Green)	V3	White(Green)	С3
V4	Brown(Blue)	V4	White(Brown)	C4
V5	Brown(Orange)	V5	White(Black)	C5
V6	Brown(Purple)	V6	White(Purple)	C6

Position of ECG Connector and Measuring Cable

ECG connecter +detect cable

Attaching Electrodes to the Patient

- 1. Shave excess hair. With a piece of cotton pad moistened with alcohol, clean the patient's skin where the electrodes should be mounted. Avoid wrinkled or uneven skin areas. Wipe off the alcohol with a dry cotton pad.
- 2. Open the electrode package and take out the electrode.
- 3. Remove the backing paper from the electrode. Be careful not to touch the adhesive side.
- 4. Attach the disposable electrode to the previously cleaned skin. Avoid wrinkled and uneven skin areas.
- 5. The electrode lead which is connected to the monitor onto the electrode.
- 6. Fasten the electrode lead to the skin with surgical tape with an extra length of wire between the tape and the electrode. This prevents body movement from moving the electrode lead.

Note

- ✓ To maintain good contact between the electrode and skin, check that the paste of the disposable electrode is not dry.
- When contact of the disposable electrode becomes poor, replace the electrode with a new one immediately. Otherwise, contact impedance between the skin and electrode increase

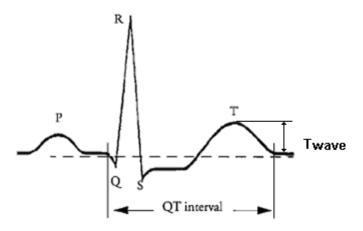
and the correct ECG cannot be obtained.

- ✓ If the contact is bed before the expiration date on the package, replace the electrode with a new one.
- ✓ To obtain a stable ECG wave form rub the skin with "skin Pure" skin preparation gel or tincture of Benzion.
- ✓ Shall use only the CE certified disposable electrode.

Choosing an ECG lead for Arrhythmia Monitoring

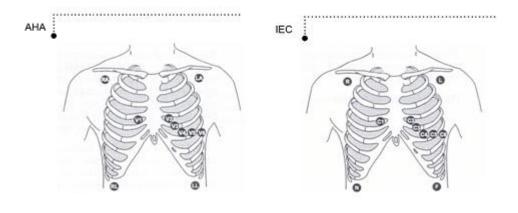
It is very important to select a suitable lead for arrhythmia monitoring.

Guidelines for non-paced patients:

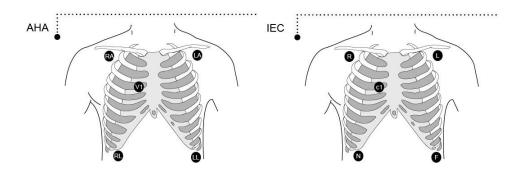

- √ QRS should be tall and narrow(recommended amplitude > 0.5mV)
- ✓ R wave should be above or below the baseline (but not bi-phasic)
- ✓ T wave should be smaller than 1/3 R-wave height.
- ✓ The P-wave should be smaller than 1/5 R-wave height.

For paced patients, in addition to the above,:

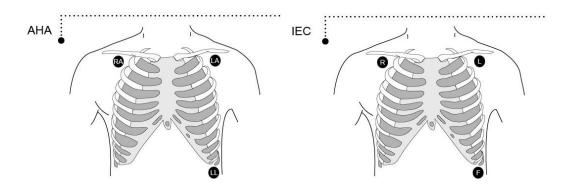
- ✓ Not wider than the normal QRS
- ✓ The QRS complexes should be at least twice the height of pace pulses.
- ✓ Large enough to be detected, with no re-polarization.

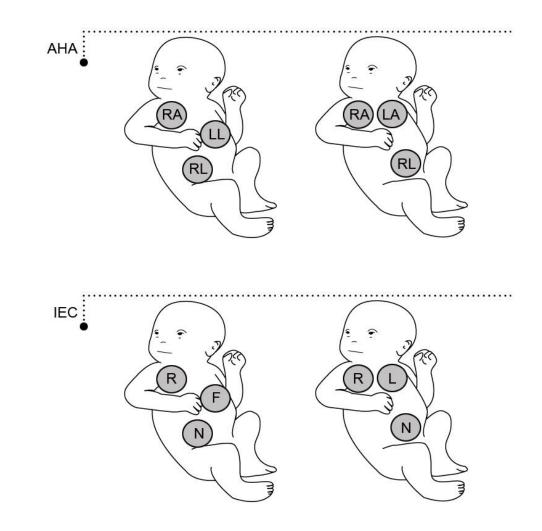

To prevent detection of P-waves or baseline noises as QRS complexes, the minimum detection level for QRS complexes is set at 0.15mV. Adjusting the ECG wave size on the monitor display(gain adjustment)does not affect the ECG signal which is used for arrhythmia analysis. If the ECG signal is too small, you may get false alarms for asystole.

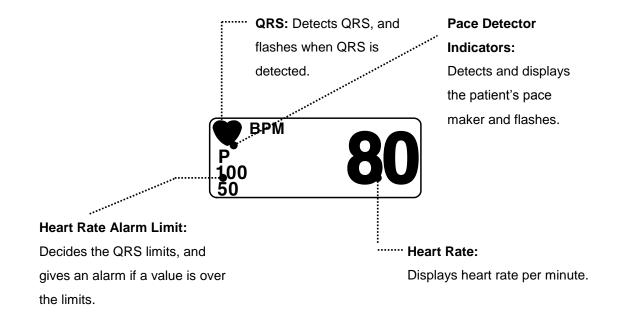
Information on the ECG waveform



When ECG signal is 80bpm T-wave duration is 180ms, and the QT interval is 350ms.


10 Position of 10-Lead


5 Position of 5-Lead


Position of 3-Lead Wrier Electrode

How to Attach the NEONATE Electrode

5.2 ECG Data Window

Note

ECG Wave Display is always on when the cable is connected.

The heart rate is calculated by a moving average. The monitor detects 8 consecutive beats, averages the R-R intervals of the latest 8 beats and uses this average to calculate the current heart rate. When a new beat is detected, the heart rate is recalculated using the latest 8 beats. The heart rate display is updated every 3 seconds.

Heart rate meter updates a new heart rate for a step increase or decrease in 10 seconds maximum. When ventricular tachycardia is detected, the alarm set in 5 seconds maximum.

Check that the delay time of the output signal (alarm trigger 80ms maximum) is within the range of the connected equipment.

Safety Precautions

Warning

CABLES — Route all cables away from patient's throat to avoid possible strangulation.

CONDUCTIVE CONNECTIONS — Extreme care must be exercised when applying medical electrical equipment. Many parts of the human/machine circuit are conductive, such as the patient, connectors, electrodes, transducers. It is very important that these conductive parts do not come into contact with other grounded, conductive parts when connected to the isolated patient input of the device. Such contact would bridge the patient's isolation and cancel the protection provided by the isolated input. In particular, there must be no contact of the neutral electrode and ground.

DEFIBRILLATION — Do not come into contact with patients during defibrillation. Otherwise serious injury or death could result.

To avoid the risk of serious electrical burn, shock, or other injury during defibrillation, all persons must keep clear of the bed and must not touch the patient or any equipment connected to the patient.

After defibrillation, the screen display recovers within 10seconds if the correct electrodes are used and applied in accordance with the manufacturer's instructions.

ECG cables can be damaged when connected to a patient during defibrillation. Check cables for functionality before using them again.

The peak of the synchronized defibrillator discharge should be delivered within 60ms of the peak of the R wave. The signal at the ECG output on the patient monitors is delayed by a maximum of 30ms.

If the ECG waveform on the screen is too unstable to synchronize with the patient's heart beat because of the following reason, remove the cause of an alarm, message, or unstable ECG, and then use a stable ECG lead for synchronization.

- ✓ ECG electrode is detached or broken. Lead wire is detached or broken.
- ✓ Lead wire moves. AC interference, EMG noise or noise from ESU is superimposed.
- ✓ Connection cable is broken or has a short circuit. Connector has poor contact.

INTERFACING OTHER EQUIPMENT — Devices may only be interconnected with each other or to parts of the system when it has been determined by qualified biomedical engineering

personnel that there is no danger to the patient, the operator, or the environment as a result. In those instances where there is any element of doubt concerning the safety of connected devices, the user must contact the manufacturers concerned (or other informed experts) for proper use. In all cases, safe and proper operation should be verified with the applicable Manufacturer's instructions for use, and system standards IEC 60601-1-1/EN 60601-1-1 must be complied with.

Electrosurgery Unit

- ✓ Electrosurgical units(ESU) emit a lot of RF interference. If the monitor is used with an ESU,RF interference may affect the monitor operation.
- ✓ Locate the monitor as far as possible from the ESU. Locate them on opssite sides of the operating table, if possible.
- ✓ Connect the monitor and ESU to different AC outlets located as far as possible from each other.
- ✓ When using this monitor with an electrosurgical unit, its return plate and the electrodes for monitoring must be firmly attached to the patient. If the return plate is not attached correctly,it may burn the patient's skin where the electrodes are attached.

5.3 ECG Data Setup

A setup window appears at lower part of the screen when the Trim Knob Key is pressed in the ECG Parameter Window. Selection is made by pressing the Trim Knob Key, while movement across the menu is performed by turning the key either clock or anticlockwise.

MAIN MENU	LEAD SELECT	ALARM LIMIT	QRS VOLUME : OFF
PREV MENU	DISPLAY	12LEAD ECG ANALYSIS	ANALYSIS SETTING

LEAD SELECT

Select channels from I to V in ECG

Lead I, II, III show up in case of connecting 3-Leads ECG Cable.

Lead I, II, III, aVR, aVL, aVF, V show up in case of connecting 5-Leads ECG Cable.

Lead I, II, III, aVR, aVL, aVF, V1,V2,V3,V4,V5,V6 show up in case of connecting 10-Leads ECG Cable.

MAIN MENU	LEAD SELECT	ALARM LIMIT	QRS VOLUME : OFF
PREV	DISPLAY	12LEAD ECG ANALYSIS	ANALYSIS SETTING
MAIN	TRACE I:	TRACE II : II	
PREV MENU			

LEAD 1 SELECT MENU

MAIN MENU	TRACE I:	TRACE II :	
PREV MENU			

MAIN TRACE I: MENU PREV MENU	>	I III aVR aVL aVF	V1 V2 V3 V4 V5 V6	
-------------------------------	---	-------------------------------	----------------------------------	--

LEAD 2 SELECT MENU

MAIN MENU	TRACE I:	TF	RACE II :		
PREV MENU					
MAIN MENU	TRACE II:	>	 	V1 V2 V3	
PREV MENU			aVR aVL aVF	V4 V5 V6	

Alarm Limit is $0 \sim 350$.

MAIN MENU	LEAD SELECT	ALARM LIMIT	QRS VOLUME : OFF
PREV	DISPLAY	12LEAD ECG ANALYSIS	ANALYSIS SETTING

	ECG ALARM LIMIT & LEVEL				
RETURN	UNITS	LOW	HIGH	ALARM ON/OFF	LEVEL
HR	BPM	50	150	OFF	MEDIUM
ST	mm	-1.0	1.0	ON	MEDIUM
PVC	/min	o	99	ON	MEDIUM
l					

QRS VOLUME

Move the Key to select a volume rate from OFF, 10% to 100%.

MAIN MENU	LEAD SELECT	ALARM LIMIT	QRS VOLUME : OFF
PREV MENU	DISPLAY	12LEAD ECG ANALYSIS	ANALYSIS SETTING
MAIN MENU PREV MENU	QRS VOLUME : OFF	> OFF 10% 20% 30% 40% 50%	60% 70% 80% 90% 100%

DISPLAY

Set the sweep speed and waveform size.

MAIN MENU	LEAD SELECT	ALARM LIMIT	QRS VOLUME : OFF
PREV MENU	DISPLAY	12LEAD ECG ANALYSIS	ANALYSIS SETTING

ECG SWEEP SPEED

ECG speed is 25 mm/s.

Speed is changeable to 6.25, 12.5, 25, 50mm/s.

MAIN MENU	SWEEP SPEED : 25 mm/s	ECG SIZE : X1	VIEW ECG
PREV MENU			
MAIN MENU	SWEEP SPEED : 25 mm/s	6.25 mm/s 12.5 mm/s	VIEW ECG
PREV MENU		> 25 mm/s 50 mm/s	

ECG SIZE

The size is changeable to X0.25, X0.5, X1, X2, X4.

MAIN MENU	SWEEP SPEED : 25 mm/s	ECG SIZE : X1	VIEW ECG
PREV			
MAIN MENU	SWEEP SPEED : 25 mm/s	ECG SIZE : X1	x 0.25 x 0.5 > x 1 x 2
PREV MENU			x 4

VIEW ECG

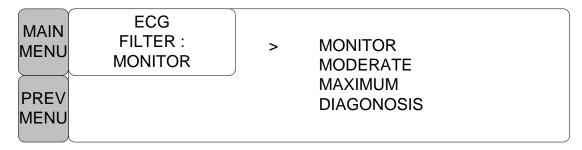
The number of ECG wave could be configured with this function.

In case of 1 CH, there are 2 traces of 1 CH data at the ECG wave.

MAIN MENU	SWEEP SPEED : 25 mm/s	ECG SIZE : X1	VIEW ECG
PREV MENU			
MAIN MENU PREV MENU	SWEEP SPEED : 25 mm/s	VIEW ECG	> 1CH 2CH 7CH 12CH

ANALYSIS SETTING

Analysis setting is divided to 3 menus.


MAIN MENU	LEAD SELECT	ALARM LIMIT	QRS VOLUME : OFF
PREV MENU	ΠΙΩΡΙΔΥ	12LEAD ECG ANALYSIS	ANALYSIS SETTING

ECG FILTER: One may select from three frequency types for WAVE FILTER.

MONITOR 0.5Hz ~ 40 Hz MODERATE 0.5Hz ~ 25 Hz MAXIMUM 5Hz ~ 25 Hz

DIAGONOSIS 0.05Hz ~ 150Hz

MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM : LETHAL
PREV	ARRHYTH LEVEL	PVC ANALYSIS: ON	ST SETTING

PACE: Sets up ON/OFF to indicate that the patient has PACE.

The PACE menu option enables/disables the pacemaker detection program.

MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM: LETHAL
PREV MENU	ARRHYTH LEVEL	PVC ANALYSIS: ON	ST SETTING
MAIN MENU	ECG FILTER : MONITOR	PACE : ON	ARRHYTHM : LETHAL
PREV MENU	ARRHYTH LEVEL	PVC ANALYSIS: ON	ST SETTING

Be aware of the following when monitoring a patient with a pacemaker.

Warning

FALSE CALLS—False low heart rate indicators or false asystole calls may result with certain pacemakers because of electrical overshoots.

MONITORING PACEMAKER PATIENTS—Monitoring of pacemaker patients can only occur with the pace program activated.

PACEMAKER SPIKE—An artificial pacemaker spike is displayed in place of the actual pacemaker spike. All pacemaker spikes appear uniform. Do not diagnostically interpret pacemaker spike size and shape.

PATIENT HAZARD—A pacemaker pulse can be counted as a QRS during asystole in either pace mode. Keep pacemaker patients under close observation.

PACEMAKER PATIENTS. Rate meters may continue to count the pacemaker rate during occurrences of cardiac arrest or some arrhythmias. Do not rely entirely upon rate meter ALARMS. Keep pacemaker patients under close surveillance.

ARRHYTH: Sets up ON/OFF to indicate detection of diagnosis (Asys, VTAC/VFIB and VTAC).

OFF: Do not perform arrhythmia diagnosis.

LETHAL: Performs the detection of Asys, VTAC/VFIB, and VTAC at the selected lead

FULL: Performs the detection of all 13 arrhythmia.

The Analysis algorithm simultaneously uses leads I, II, III, and the V lead for ECG and arrhythmia analysis.

MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM: OFF
PREV MENU	ARRHYTH LEVEL	PVC ANALYSIS: ON	ST SETTING
MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM : LETHAL
PREV MENU	ARRHYTH LEVEL	PVC ANALYSIS: ON	ST SETTING
MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM: FULL
PREV MENU	ARRHYTH LEVEL	PVC ANALYSIS: ON	ST SETTING

ACC VENT

- **Adult** Accelerated ventricular occurs when six or more ventricular beats are detected with an average heart rate for the ventricular beat between 50 and 100 beats per minute.
- **0-2 years**—Occurs when six or more ventricular beats are detected with an average heart rate for the ventricular beat between 60 and 160 beats per minute.
- **3-10 years**—Occurs when six or more ventricular beats are detected with an average heart rate for the ventricular beat between 60 and 140 beats per minute.
- **11-13 years**—Occurs when six or more ventricular beats are detected with an average heart rate for the ventricular beat between 60 and 130 beats per minute.

ASYSTOLE

Ventricular asystole occurs whenever the displayed heart rate drops to zero.

BIGEMINY

Occurs when two or more bigeminal cycles (a ventricular beat followed by a non-ventricular beat) are detected.

BRADY

Bradycardia is the average of the most recent eight R-to-R intervals at a heart rate less than the set low heart rate limit.

NOTE

The Brady limit matches the low heart rate limit. If the low heart rate limit is changed, the Brady limit changes.

COUPLET

Occurs when two ventricular beats are detected and have non-ventricular beats before and after the couplet. The coupling interval must be less than 600 milliseconds.

IRREGULAR

Occurs when six consecutive normal R-to-R intervals vary by 100 milliseconds or more.

PAUSE

Occurs when the interval between two consecutive beats exceeds three seconds.

PVC

Isolated premature ventricular complexes occur when a premature ventricular beat is Detected and has non-ventricular beats before and after.

R ON T

Occurs when a ventricular complex is detected within the repolarization period of a Non-ventricular beat.

TACHY

Tachycardia is four R-to-R intervals at a heart rate greater than the set high heart rate limit.

NOTE

The Tachy limit matches the high heart rate limit. If the high heart rate limit is changed, the Tachy limit changes.

TRIGEMINY

Occurs when two or more trigeminal cycles (a ventricular beat followed by two non-Ventricular beats) are detected.

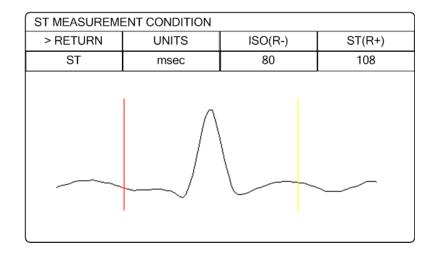
V BRADY

- **Adult**—Ventricular bradycardia occurs when a run of three or more ventricular beats is detected with an average heart rate that is less than or equal to 50 beats per minute.
- **0-2**, **3-10**, and **11-13** years—Occurs when a run of three or more ventricular beats is detected with an average heart rate that is less than or equal to 60 beats per minute.

VFIB/VTAC

Ventricular fibrillation occurs when the ECG waveform indicates a chaotic ventricular arrhythm.

ST SETTING: ST signal and setting related ST menu.


MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM: FULL
PREV	ARRHYTH LEVEL	PVC ANALYSIS: ON	ST SETTING

ST ANALYSIS: ON/OFF ST analysis signal.

MAIN MENU	ST ANALYSIS : ON	MEASUREMENT CONDITION	TEMPLETE SELECT: II
PREV			

MEASUREMENT CONDITION: ST measurement condition setting

MAIN	ST ANALYSIS : ON	MEASUREMENT CONDITION	TEMPLETE SELECT: II
PREV			

TEMPLETE SELECT:

TEMPLETE SELECT: Select a Representative Lead of ST LEVEL.

The trace of the selected LEAD shows up at ST Window of POPUP TREND WINDOW

^{*} In case of 3 Lead, this is fixed to Lead II.

MAIN MENU	ST ANALYSIS : ON		SUREMENT NDITION	TEMPL SELE	
PREV MENU					
MAIN MENU PREV MENU	TEMPLETE SELECT: III	>	I II III aVR aVL aVF	V1 V2 V3 V4 V5 V6	

PVC ANALYSIS: Decision maker to display PVC value sign with ON/OFF

MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM: FULL
PREV MENU	ARRHYTH LEVEL	PVC ANALYSIS: OFF	ST SETTING

MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM: FULL
PREV MENU		PVC ANALYSIS: ON	ST SETTING

ARRHYTH LEVEL:

One can set up priorities when he or she uses the alarm for the diagnostic function.

MAIN MENU	ECG FILTER : MONITOR	PACE : OFF	ARRHYTHM: FULL
PREV MENU	ARRHYTH LEVEL	PVC ANALYSIS: OFF	ST SETTING

ARRHYTH ALARM LEVEL		
RETURN	MESSAGE	
ASYSTOLE	HIGH	
VTAC	HIGH	
VTAC/VFIB	HIGH	
BIGEMINY	MESSAGE	
ACC VENT	MESSAGE	
COUPLET	MESSAGE	
IRRGULAR	LOW	
PAUSE	LOW	
PVC	MESSAGE	
R ON T	MESSAGE	
TRIGEMINY	MESSAGE	
V BRADY	MEDIUM	
SHORT RUN	MEDIUM	

12 CH ECG ANALYSIS

There are 5 sub-menus for 12 CH ECG ANALYSIS menu as following;

MAIN MENU	LEAD SELECT	ALARM LIMIT	QRS VOLUME : OFF
PREV	DISPLAY	12LEAD ECG ANALYSIS	ANALYSIS SETTING

MAIN	12 CH ANALYSIS RUN	REVIEW	ADMIT INFO
PREV		CLEAR	SENSITIVITY

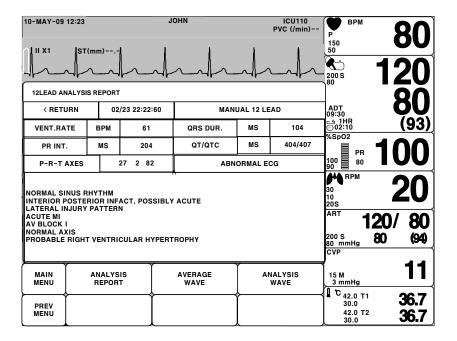
12LEAD ANALYSIS RUN

This is the start command of 12 CH ECG ANALYSIS.

MAIN MENU	12 CH ANALYSIS RUN	REVIEW	ADMIT INFO
PREV		CLEAR	SENSITIVITY

REVIEW

This is result window to see the interpretation of 12 CH ECG.


There are 3 sub-menus for REVIEW menu

MAIN MENU	12 CH ANALYSIS RUN	REVIEW	ADMIT INFO
PREV		CLEAR	SENSITIVITY
MAIN MENU	ANALYSIS REPORT	AVERAGE WAVE	ANALYSIS WAVE
PREV			

ANALYSIS REPORT

Showing AVERAGE WAVE of each ECG channel when the module interprets them.

MAIN	ANALYSIS	AVERAGE	ANALYSIS
MENU	REPORT	WAVE	WAVE
PREV MENU			

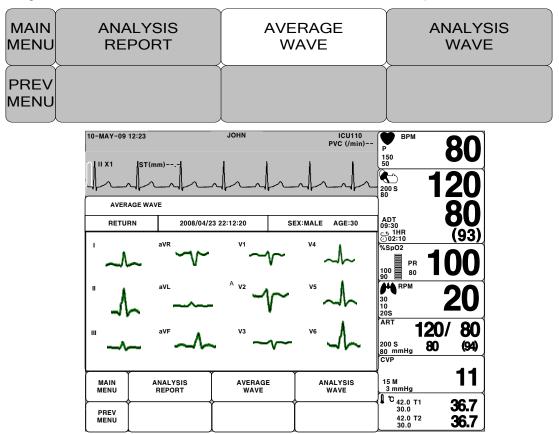
If ECG Board sends diagnosis code to BM5, it will display the interpretation of following table at the report and the screen.

NUMBER	CODE	DESCRIPTION	
	Sinus Node Rhythms and Arrhythmias		
1	111	Normal Sinus Rhythm	
2	112	Sinus Bradycardia (HR : 50-59)	
3	113	Sinus Bradycardia (HR < 50)	
4	115	Sinus Tachycardia (HR: 100-130)	
5	116	Sinus Tachycardia (HR > 130)	
6	121	Sinus Arrhythmia	
7	131	Sinus Pause (pause <= 3.0sec)	
8	132	Sinus Pause(pause > 3.0sec)	
9	135	SA Block	
	Other Supraventricular Arrhythmias		
10	211	Atrial Rhythm	
11	212	Atrial Tachycardia (HR: 100-130)	
12	213	Atrial Tachycardia (HR > 130)	
13	214	Wandering Pacemaker	

14	215	Multifocal Atrial Tachycardia
15	216	Nonsustained Atrial Tachycardia
16	217	Atrial Flutter
17	218	Atrial Fibrillation
18	219	(possible) Atrial Flutter with 2:1 AV conduction
19	221	Junctional Rhythm
20	222	Supraventricular Tachycardia(AV node dependent Tachycardia)
21	223	Nonsustained Supraventricular Tachycardia
22	231	PAC(Premature Atrial Contraction)
23	232	Bigeminy PAC
24	233	Trigeminy PAC
25	234	short run of PAC
26	241	PJC
27	242	Bigeminy PJC
28	243	Trigeminy PJC
29	244	short run of PJC
30	251	EAB(Escape Atrial Beat)
31	252	EAR (Escape Atrial Rhythm, HR: 50-54)
32	253	EAR (Escape Atrial Rhythm: HR < 50)
33	261	EJB (Escape Juncational Beat)
34	262	EJR (Escape Junctional Rhythm)
		Ventricular Arrhythmias
35	311	Ventricular Rhythm
36	312	Ventricular Tachycardia
37	313	Slow Ventricular Tachycardia
38	314	Nonsustained Ventricular Tachycardia
39	315	Ventricular Flutter
40	316	Nonsustained Ventricular Flutter
41	321	PVC(Premature Ventricular Contraction)
42	322	Bigeminy PVC
43	323	Trigeminy PVC
44	324	short run of PVC
45	331	EVB (Escape Ventricular Beat)

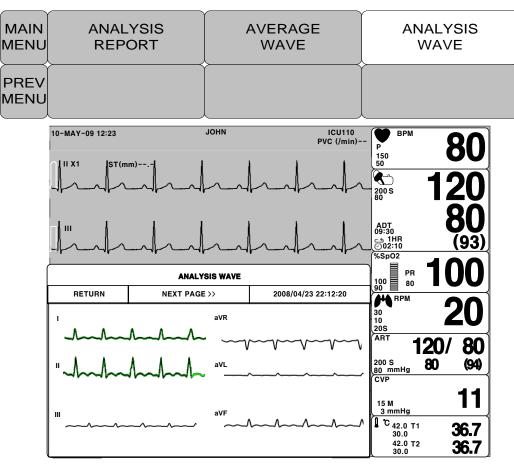
46	332	EVR (Escape Ventricular Rhythm)			
	AV and Intraventricular Conduction				
47	411	AV Block I			
48	412	AV Block II-1			
49	413	AV Block II-2			
50	414	2:1 AV Block			
51	415	AV Block III			
52	421	ICRBBB (Incomplete Right Bundle Branch Block)			
53	422	CRBBB (Complete Right Bundle Branch Block)			
54	423	Bifascicular Block (RBBB + LPFB)			
55	424	Bifascicular Block (RBBB + LAFB)			
56	425	LBBB (Left Bundle Branch Block)			
57	431	Nonspecific Intraventricular Conduction Delay			
58	441	WPW (Ventricular Preexcitation)			
		QRS axis and Voltage			
59	511	Normal Axis			
60	512	Right Axis Deviation (Posterior Fascicular Block)			
61	513	Left Axis Deviation (Anterior Fascicular Block)			
62	514	Northwest Axis			
63	521	Low Voltage QRS			
64	522	Low Voltage (Limb Leads)			
65	523	Low Voltage (Chest Leads)			
		Chamber Hypertrophy or Enlargement			
66	611	BAE (Biatrial Enlargement)			
67	621	RAE (Right Atrial Enlargement)			
68	631	LAE (Left Atrial Enlargement)			
69	641	BVH (Biventricular Hypertrophy)			
70	650	probable RVH			
71	651	RVH (Right Ventircular Hypertrophy)			
72	661	LVH (Left Ventricular Hypertrophy)			
		Repolarization Changes			
73	710	ST abnormality, possible subendocardial ischemia			
74	711	ST abnormality, possible subendocardial ischemia (Anteroseptal)			

75	712	ST abnormality, possible subendocardial ischemia (Anterolateral)
76	713	ST abnormality, possible subendocardial ischemia (Anterior)
77	714	ST abnormality, possible subendocardial ischemia (High Lateral)
78	715	ST abnormality, possible subendocardial ischemia (Inferior)
79	720	ST abnormality, possible transmural injury
80	721	ST abnormality, possible transmural injury (Anteroseptal)
81	722	ST abnormality, possible transmural injury (Anterolateral)
82	723	ST abnormality, possible transmural injury (Anterior)
83	724	ST abnormality, possible transmural injury (High Lateral)
84	725	ST abnormality, possible transmural injury (Inferior)
85	730	T wave inversion (possible Myocardial Ischemia)
86	731	T wave inversion in Anteroseptal (possible Myocardial Ischemia)
87	732	T wave inversion in Anterolateral (possible Myocardial Ischemia)
88	733	T wave inversion in Anterior (possible Myocardial Ischemia)
89	734	T wave inversion in High Lateral (possible Myocardial Ischemia)
90	735	T wave inversion in Inferior (possible Myocardial Ischemia)
91	741	Prolonged QT
		Myocardial Infarction
92	810	Anterior Extensive MI
93	811	Anteroseptal MI
94	812	possible Anteroseptal MI
95	813	Anterior MI
96	814	High Lateral MI
97	815	Lateral MI
98	816	Anterolateral MI
99	817	Inferior MI
100	818	Posterior MI
		Pacemaker
101	911	Pacemaker Rhythm
102	912	paced Atrial Rhythm
103	913	paced Ventricular Rhythm


Warning

This device uses a computerized 12-lead ECG analysis program which can be used as a tool in ECG tracing interpretation. This computerized interpretation is only significant when used in conjunction with clinical findings. All computer-generated tracings should be overread by a qualified physician.

The intended use of this device is to record electrocardiograms and vectorcardiograms from surface ECG electrodes, not for positioning (floating) temporary pacemaker leadwires, performing pericardiocentesis, or other internal applications


AVERAGE WAVE

Showing AVERAGE WAVE of each ECG channel when the module interprets them.

ANALYSIS WAVE

Showing interpreted ECG wave for 2.5 seconds period of each 3 channels in total 10 seconds from starting Interpretation. For example, each channel shows each time period as CH I, II, III show for 0~2.5 second section, CH aVR, aVL, aVF show in 2.5~5 second section, CH V1, V2, V3 show in 5~7.5 second section and CH V4, V5, V6 show in 7.5~ 10 second section. Under this window, all the ECG channels are printed out

ADMIT INFO

This is a menu for setup the configuration of interpretation.

This is made up with 3 sub-menus.

MAIN MENU	12 CH ANALYSIS RUN	REVIEW	ADMIT INFO
PREV		CLEAR	SENSITIVITY

CHANGE ADMIT INFORMATION				
RETURN	DESCRIPTION			
LAST NAME	JOHN			
FIRST NAME	WASHINGTON			
PATIENT ID	BM-001			
SEX	MALE			
BIRTH DATE	01 – JAN - 2007			
AGE	ADULT			
ST LEVEL	AUTO			
DIAGNOSIS LEVEL	PROFESSIONAL			
AC FILTER	60Hz			
BASE SETUP	ON			
EMG SETUP	OFF			
LPF SETUP	150			

SENSITIVITIY

This is the adjustment menu for amplitude of 12CH ECG wave.

There are 5 kinds of gain from x0.25 to x4 as following.

MAIN MENU	12 CH ANALYSIS RUN	REVIEW	ADMIT INFO
PREV MENU		CLEAR	SENSITIVITY
MAIN MENU	12LEAD ANALYSIS RUN	SENSITIVITY	> X0.25 X0.5 X1
PREV MENU			X2 X4

CLEAR

This is the deleting function for result of interpretation.

The results of analysis report, average wave and analysis wave are deleted if this menu is selected.

MAIN MENU	12 CH ANALYSIS RUN	REVIEW	ADMIT INFO
PREV		CLEAR	SENSITIVITY

Warning

Display Heart Beat Equipment Signal

Hart Beat equipment signal displays when the PACE mode is. the signal appears series form. The signal size or form are meaningless clinically

Number Of Heart Beat

Attention to the patient with heart beat equipment. The heart beat equipment can show heart beat even during arrhythmia continuously. Therefore, do not depend on heart beat alarm excessively.

CAUTION

FDA POSTMARKET SAFETY ALERT

The United States FDA Center for Device and Radiological Health issued a safety bulletin October 14, 1998. this bulletin states "that minute ventilation rate-adaptive implantable pacemakers can occasionally interact with certain cardiac monitoring and diagnostic programmed rate."

The FDA further recommends precautions to take into consideration for patients with these types of pacemakers. These precaution for patients with these types of pacemakers. These precautions include disabling the rate responsive mode and enabling an alternate pace mode. For more information contact:

Office of Surveillance and Biometrics, CDRH, FDA

1350 Packard Drive, Mail Stop HFZ-510 Rockville, MD 20850 U.S.A

NOTE

ECG monitoring with patients in non-invasive trans coetaneous pacemakers may not be possible due to large amounts of energy produced by these devices. Monitoring ECG with an external device may be needed.

WARNINGS

VENTRICULAR ARRHYTHMISAS

The arrhythmia analysis program is intended to detect ventricular arrhythmias. It is not designed to detect a trial or supra ventricular arrhythmias. Occasionally it may incorrect identify the presence or absence of an arrhythmia. Therefore, a physician must analyze the arrhythmia information in conjunction with other clinical findings.

SUSPENDED ANALYSIS

Certain conditions suspend arrhythmia analysis. When suspended, arrhythmia conditions are not detected and alarms associated with arrhythmias do not occur. The messages which alert you to the conditions causing suspended arrhythmia analysis are: ARR OFF, ARRHYSUSPEND, LEADS FAIL, ALARM PAUSE, ALL ALARMS OFF, and DISCHARGED.

Trouble shooting

Problem:

Inaccurate heart rate and/or false a systole.

Solution:

Check ECG signal from patient:

- 1. Check/adjust lead placement.
- 2. Check/perform skin preparation.
- 3. Check/replace electrodes.

Check amplitude of ECG waveform:

- 1. Select ECG parameter label.
- 2. Select DISPLAY LEAD,
- 3. Scroll through all ECG leads and check for 0.5mV amplitude at normal (1X) size. (at least 0.5mV amplitude is required for QRS detection.) for borderline signals, validate on a graph.
- 4. If amplitudes are low, electrodes may need to be repositioned or replaced.

Problem:

False ventricular calls.

Solution:

Check ECG signal from patient: (the chest lead may exhibit polarity changes which may occasionally cause an inaccurate call.)

- 1. Check/adjust lead placement.
- 2. Check/perform skin preparation.
- 3. Check/replace electrodes. (if chest lead is a problem, move the chest lead to another chest position or leg position.)

Problem:

Inaccurate pacemaker detection

Solution:

Use pacemaker processing:

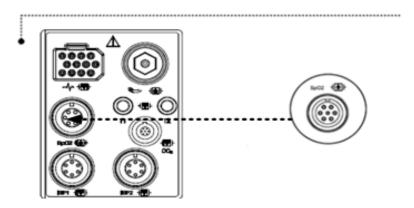
- 1. Select ECG parameter label.
- 2. Display the lead of ECG with the greatest amplitude in the top waveform position.
- 3. Select ANALYSIS SETTINGS.
- 4. SELECT DETECT PACE.

6. SpO₂

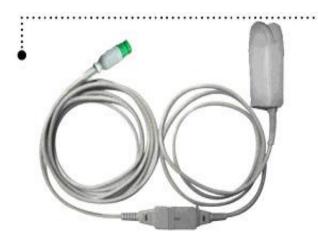
6.1 Outline

SpO₂ Connector Location and Measuring Cable

6.2 SpO2 Data Window6.3 SpO2 Data Setup


SWEEP SPEED RATE VOLUME ALARM ALARM LIMIT

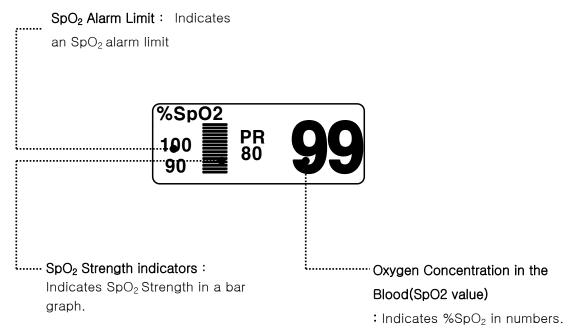
6.1 Outline


SPO2 monitoring is a noninvasive technique used to measure the amount of oxygenated hemoglobin and pulse rate by measuring the absorption of selected wavelengths of light. The light generated in the probe passes through the tissue and is converted into an electrical signal by the photodetector in the probe. The monitor processes the electrical signal and displays on the screen a waveform and digital values for SpO2 and pulse rate. It detects SpO2 in the way of transmitting the red and infrared rays into the capillary vessel to take the pulsation. Also perform the alarm function according to the setting value.

SpO2 Connector Location and Measuring Cable

SpO₂ connector

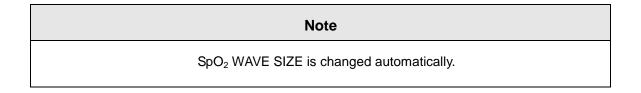
SpO₂ Measuring Cable



Note

The signal input is a high-insulation port and it is defibrillator proof (

The insulated input ensures patient safety and protects the device during defibrillation and electrosurgery.


6.2 SpO₂ Data Window

The current SPO2 value and the derived pulse rate (RATE) are displayed. The block sets indicate the strength of the signal (twenty block bars indicate the strongest signal). The SPO2 measurements are averaged over a 6-second period of time.

The monitor display is updated every second.

The SPO2 monitoring features are found in the SPO2 menu. These features include alarm limit adjustment, display of RATE, and RATE volume.

Signal and Data Validity

It is extremely important to determine that the probe is attached to the patient correctly and the data is verifiable. To make this determination, three indications from the monitor are of assistance—signal strength bar, quality of the SPO2 waveform, and the stability of the SPO2 values. It is critical to observe all three indications simultaneously when ascertaining signal and data validity.

Signal Strength Bar

The signal strength bar is displayed within the SPO2 values window. This bar consists of 20 blocks set depending on the strength of the signal. Proper environmental conditions and probe attachment will help to ensure a strong signal.

Quality of SPO2 Waveform

Under normal conditions, the SPO2 waveform corresponds to (but is not proportional to) the arterial pressure waveform. The typical SPO2 waveform indicates not only a good waveform, but helps the user find a probe placement with the least noise spikes present. The figure below represents an SPO2 waveform of good quality.

Good Quality SPO2 Waveform

If noise (artifact) is seen on the waveform because of poor probe placement, the photodetector may not be flush with the tissue. Check that the probe is secured and the tissue sample is not too thick. Pulse rate is determined from the SPO2 waveform which can be disrupted by a cough or other hemodynamic pressure disturbances. Motion at the probe site is indicated by noise spikes in the normal waveform. (See the figure below.) It has been noted that letting the patient view the SPO2 waveform enables them to assist in reducing motion artifact.

SPO2 Waveform with Artifact

Stability of SPO2 Values

The stability of the displayed SPO2 values can also be used as an indication of signal validity. Although stability is a relative term, with a small amount of practice one can get a good feeling for changes that are artifactual or physiological and the speed of each. Messages are provided in the SPO2 values window to aid you in successful SPO2 monitoring.

WARNING

In the monitoring of patients the coincidence of adverse conditions may lead to a disturbed signal going unnoticed. In this situation artifacts are capable of simulating a plausible parameter reading, so that the monitor fails to sound an alarm. In order to ensure reliable patient monitoring, the proper application of the probe and the signal quality must be checked at regular intervals.

6.3 SpO₂ Data Setup

ALARM LIMIT: Menu in which SpO₂ limits are set up.

SWEEP SPEED: speed SpO2 Waveform display setting menu RATE VOLUME: Menu in which RATE VOLUME is set up

MAIN MENU	ALARM	RATE VOLUME: OFF

RATE VOLUME

Move the KEY to select the volume from OFF to 100%.

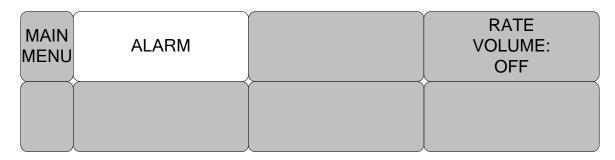
When the ECG volume rate is set, it turns OFF automatically.

MAIN MENU	ALARM		RATE VOLUME: OFF
MAIN MENU	RATE VOLUME: OFF	> OFF 10% 20% 30% 40%	60% 70% 80% 90% 100%
		50%)

ALARM

Two menus: ALARM LIMIT, ALARM provided in the alarm menu

Number setting of alarm value of %SpO2 is 0 ~ 100


Warning sound or message displays configuration menu when an alarm is triggered.

- 1. Move the ▶ mark to select from RETURN, SpO₂ or SpO₂-R, and press.
- 2. After pressing at SpO₂, move the cursor right or left to LOW, and press.
- 3. Once the color is changed, move the cursor again to the selected value and press.

4. Place the cursor to HIGH and press, when the color changes, move the cursor again to select the targeted value, and press. Finally move to SpO₂ and press.

(You may decide to perform the process in the opposite order, LOW to HIGH, to have the same result.)

- 5. After pressing at SpO₂-R, move the cursor right or left to LOW, and press.
- 6. Once the color is changed, move the cursor again to the selected value and press.
- 7. Place the cursor to HIGH and press, when the color changes, move the cursor again to select the targeted value, and press. Finally move to SpO₂-R and press.
- 8. With the selection of RETURN the user gets out of the menu.

	SPO2 ALARM LIMIT & LEVEL				
RETURN	UNITS	LOW	HIGH	ALARM ON/OFF	LEVEL
SPO2-%	%	91	100	OFF	MEDIUM
SPO2-R	BPM	50	150	ON	MEDIUM

LEAD FAULT Condition

When using a reusable finger probe, there is a system alarm to alert you when the probe is off the Monitor. The monitor defaults this "LEAD FAULT" condition as a System Warning alarm. however, You can set it as a System ALARM LEVEL in Monitor Defaults.

SPO2 Messages

Below is a list of system status alarm messages which may be displayed in the SPO2 parameter window during monitoring.

CHECK PROBE

Reusable finger probe is off the patient. Check the probe. *The factory default for this alarm is MESSAGE ALARM.*

PULSE SEARCH

Detection by the monitor of a repeatable pulse has ceased. Check the patient and the probe site.

POOR SIGNAL

The SPO2 signal is too low. No SPO2 data is displayed. This can be due to a low patient pulse, patient motion, or some other interference. Check the patient and the probe.

LOST SIGNAL

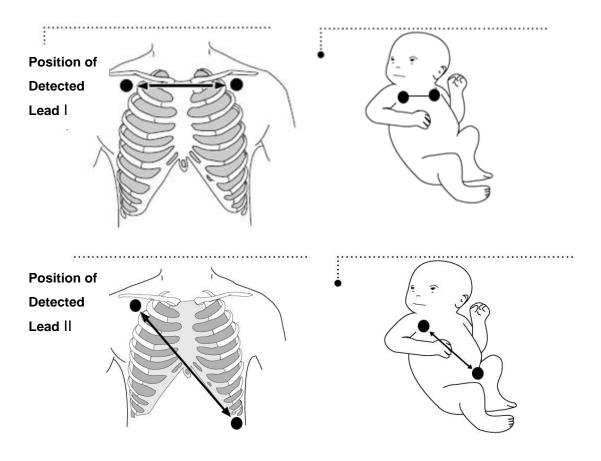
SPO2 data continues to be displayed, but the quality of the signal is questionable. Check the patient and the probe.

7. RESPIRATION

7.1 Outline

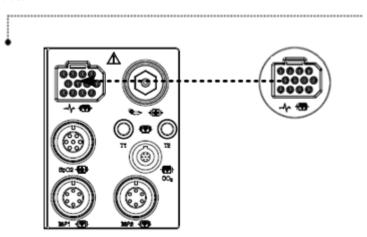
Respiration Connector and Measuring Cable

7.2 RESPIRATION Data Window


7.3 RESPIRATION Data Setup

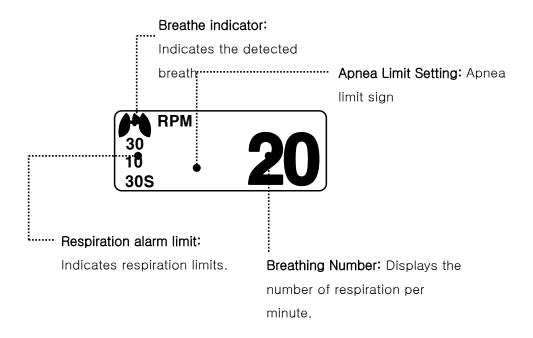
Respiration Size

Alarm Limit


7.1 Outline

Respiration via ECG Lead II electrode makes the skin area of the chest enlarged, causing changes in the resistance of skin. Through this it calculates respiration value per minutes and performs the alarm function according to limit value.

Respiration Connector and Measuring Cable


Respiration Connecter

Respiration
Measuring Cable

7.2 Respiration Data Window

7.3 Respiration Data Setup

ALARM: Respiration alarm setting menu RESP SIZE: A menu to setup Wave Display

SWEEP SPEED: A menu to setup Wave Display of speed APNEA DETECT: A menu to setup APNEA alarm display

MAIN	ALARM	SWEEP SPEED : 25mm/s	RESP SIZE : X 2
	APNEA	LEAD	
	DETECT:	SELECT:	
	ON	II	

RESPIRATION SPEED

Wave pattern speed is 6.25, 12.5, 25 mm/s.

MAIN MENU	ALARM	SWEEP SPEED : 12.5mm/s	RESP SIZE : X 2
	APNEA DETECT : ON	LEAD SELECT: II	
MAIN MENU	ALARM	SWEEP SPEED: 12.5mm/s	6.25 mm/s > 12.5 mm/s
	APNEA DETECT : ON		25 mm/s

RESPIRATION

Set wave pattern size X2~ X10.

MAIN MENU	ALARM	SWEEP SPEED : 12.5mm/s	RESP SIZE: X 2
	APNEA DETECT : ON	LEAD SELECT: II	
MAIN MENU	ALARM	RESP SIZE : X 2	> X 2 X 4 X 6
	APNEA DETECT : ON		X 8 X10

APNEA DETECT

Deciding function of activating Apnea Alarm

MAIN MENU	ALARM	SWEEP SPEED: 12.5mm/s	RESP SIZE : X 2
	APNEA DETECT : ON	LEAD SELECT: II	
MAIN MENU	ALARM	SWEEP SPEED : 12.5mm/s	RESP SIZE : X 2
	APNEA DETECT : OFF	LEAD SELECT: II	

LEAD SELECT

This is for changing the reference LEAD for respiration

LEAD I or LEAD II can be selected.

MAIN MENU	ALARM	SWEEP SPEED: 25mm/s	RESP SIZE : X 2
	APNEA DETECT : ON	LEAD SELECT: II	
MAIN MENU	ALARM	SWEEP SPEED: 25mm/s	RESP SIZE: X 2
	APNEA DETECT : ON	LEAD SELECT:	

ALARM

Alarm menu provide ALARM LIMIT and ALARM SOUND.

MAIN MENU	ALARM	SWEEP SPEED: 12.5mm/s	RESP SIZE : X 2
	APNEA DETECT : ON	LEAD SELECT: II	

Alarm Limit of Respiration Numeric Value is 5 ~ 150bpm

Alarm Limit of RESPIRATION APNEA Numeric Value is 3 ~ 30sec.

Warning sound or message displays activation setting when Respiration ALRAM occurs.

- 1. Move the ▶ mark to select RETURN, RESP or RESP-A, and press.
- 2. After a press in RESP, move the cursor right or left to LOW, and press.
- 3. After the color changed, move the cursor right or left to the selected value, and press.
- 4. Place the cursor to HIGH, and press. When the color has changed, move the cursor again to select the value and press. Move to the RESP and press again. (You may decide to perform the process in the opposite order, LOW to HIGH, to have the same result.)
- 5. Once RESP-A is pressed, move to LOW and press.

- 6. When the color has changed, move the cursor to select the value, and press.
- 7. A press in the HIGH position, the color changes. Then move the cursor to select the value and press. Move again to RESP-A, and press.
- 8. Select RETURN to get out of the window.

RESP ALARM LIMIT & LEVEL					
RETURN	UNITS	LOW	HIGH	ALARM ON/OFF	LEVEL
RESP	RPM	11	32	OFF	MEDIUM
RESP-A	SEC	0	21	ON	MEDIUM

8. NIBP

8.1 Outline

NIBP Connector Location and Cuff

8.2 NIBP Data Window 8.3 NIBP Data Setup

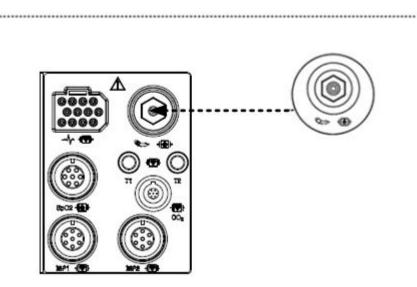
ALARM LIMIT

ALARM

CUFF SIZE

UNIT SELECT

INTERVAL


STAT

INFLATION

8.1 Outline

This function is to measure minimum, Maximum and average blood pressure by using Oscillometric method

Position of NIBP Connecter and cuff NIBP Connector

ADULT CUFF

Note

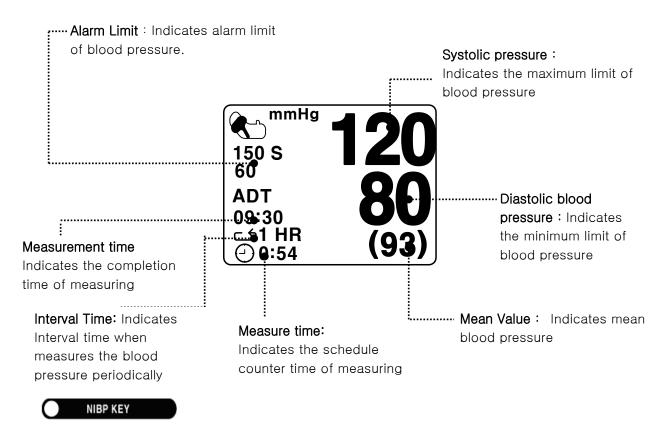
As the value of NIBP can vary according to the age and sex of a patient, the user needs to set up right data in Parameter Menu before measurement.

WARNING

Noninvasive blood pressure monitoring is not recommended for patients with hypotension, hypertension, arrhythmias or extremely high or low heart rate. The software algorithm cannot accurately compute NIBP or patients with these conditions.

Note

As the value of NIBP can vary according to the age and sex of a patient, the user needs to set up right data in parameter Menu before measurement. Tubes between the cuff and the monitor are not kinked or blocked.


The air pad should be exactly over the branchial artery. Tubing is immediately to the right or left of the branchial artery to prevent kinking when elbow is bent.

The maintenance is performed every 2 years.

Check the following list devise to operates properly and safety at all times.

- 1. Check for proper cuff size.
- 2. Check for residual air left in the cuff from a previous measurement.
- 3. Make sure cuff is not too tight or too loose.
- 4. Make sure cuff and heart are at same level, otherwise hydrostatic pressure will offset the NIBP value.
- 5. Minimize patient movement during measurement.
- 6. Watch for pulses paradox us.
- 7. Check for leak in cuff or tubing.
- 8. Patient may have a weak pulse.

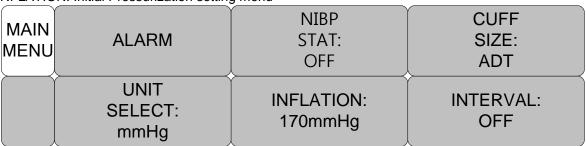
8.2 NIBP Data Window

POWER OFF

When power is cut off during pressure, air runs out of the CUFF automatically.

8.3 NIBP Data Setup

ALARM: A menu to set the Alarm


STAT: A menu to start 5 minutes of continuous, sequential NIBP measurements.

CUFF SIZE: A menu to select cuff size

UNIT SELECT: A menu to select the pressure unit

INTERVAL : A menu to set Interval time when measures the blood pressure periodically

INFLATION: Initial Pressurization setting menu

ALARM

The alarm provides ALARM LIMIT and ALARM SOUND.

Alarm setting Numeric Value of Systolic, Diastolic, and mean pressure is 10 ~ 360mmHg.

The menu which decide activate of warning sign and message display when the respiration alarm is on.

- 1. Move the ▶ mark to select one from RETURN, NIBP-S, NIBP-M, or NIBP-D, and press.
- 2. Press the key at NIBP-S, and move to LOW, and press again.(The user gets the same result regardless of the LOW-HIGH, or HIGH-LOW order.)
- 3. When the color has changed, move it again to select a target value, and press.
- 4. Press the key at HIGH. When the color has changed, move to the right to select a target value, and press.
- 5. Set up or revise the values of NIBP-M and NIBP in the same way as above.
- 6. With the selection of RETURN, the user can get out of the window.

MAIN MENU ALARM		NIBP STAT: OFF	CUFF SIZE: ADT	
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF	

NIBP ALARM LIMIT & LEVEL					
RETURN	UNITS	LOW	HIGH	ALARM ON/OFF	LEVEL
NIBP-S	mmHg	80	200	ON	MEDIUM
NIBP-M	mmHg	40	140		
NIBP-D	mmHg	20	120		
					J

NIBP STAT

Start 5 minutes of continuous, sequential NIBP measurements.

MAIN MENU	ALARM	NIBP STAT: OFF	CUFF SIZE: ADT	
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF	

CUFF SIZE

The user can select a CUF between ADULT and NEONATAL.

MAIN MENU	ALARM	NIBP STAT: OFF	CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF
MAIN MENU	ALARM	CUFF SIZE:	> ADT PED
	UNIT SELECT: mmHg		NEO

UNIT SELECT

It is a function to set blood pressure measurement unit. The blood pressure measurement unit provides mmHg and kPa.

MAIN MENU	ALARM	ALARM NIBP STAT: OFF	
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF
MAIN MENU	ALARM	NIBP STAT: OFF	CUFF SIZE: ADT
	UNIT SELECT: kPa	INFLATION: 170mmHg	INTERVAL: OFF

Rev. 3.1 8. NIBP 144

INTERVAL

This menu is used for selecting intervals when measures the blood pressure automatically.

Select a target interval from 1min, 2, 3, 4, 5, 10, 15, 20, 30, 1hour, 2, 4, 8.

MAIN MENU	ALARM	NIBP STAT: OFF	CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF
MAIN MENU	INTERVAL: OFF	> OFF 1MIN 2MINS 3MINS 4MINS 5MINS 10MINS	15MINS 20MINS 30MINS 1HR 2HRS 4HRS

Warning

Periodically check patient limb circulation distal to the cuff. Check frequently when using auto NBP in 1 and 2 minute intervals. Intervals below 10 minutes are not recommended for extended periods of time.

INFLATION

It is a function for set the maximum initial inflation pressure value.

The range of initial inflation pressure value of BM5 (CS, CX) is as follows.

ADT/PED: Numeric value is 80, 90, 100, 110, ~ 230, and 240.

Numeric value is 60, 70, 80, 90, 100, 110, and 120.

MAIN MENU	ALARM		CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF

Rev. 3.1 8. NIBP 145

MAIN MENU	ALARM		CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF
MAIN MENU	ALARM		CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 80mmHg	INTERVAL: OFF

The range of initial inflation pressure value of BM5 CX is as follows. ADT : Numeric value is 120 – 250mmHg PED : Numeric value is 80 – 170mmHg Numeric value is 60 - 140mmHg

MAIN MENU	ALARM		CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 170mmHg	INTERVAL: OFF
MAIN MENU	ALARM		CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 120mmHg	INTERVAL: OFF
MAIN MENU	ALARM		CUFF SIZE: ADT
	UNIT SELECT: mmHg	INFLATION: 250mmHg	INTERVAL: OFF

Rev. 3.1 8. NIBP 146

Warning

Pay attention to not to block connecting hose when you put cuff on patient.

Rev. 3.1 8. NIBP 147

9. IBP

9.1 Description

IBP Connectors & Accessories

9.2 IBP Data Window

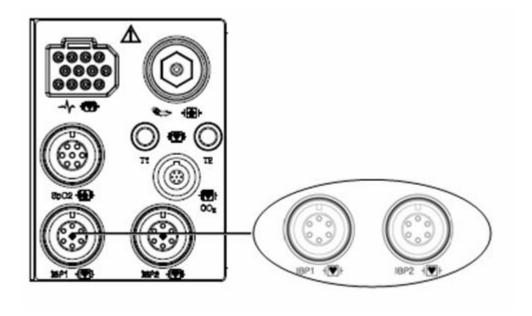
9.3 IBP Data Setting

CHANGE NAME (Configuration of measuring position)

SCALE (Configuring size of measurement waveform)

ALARM LIMITS (Maximum / Minimum Alarming Values)

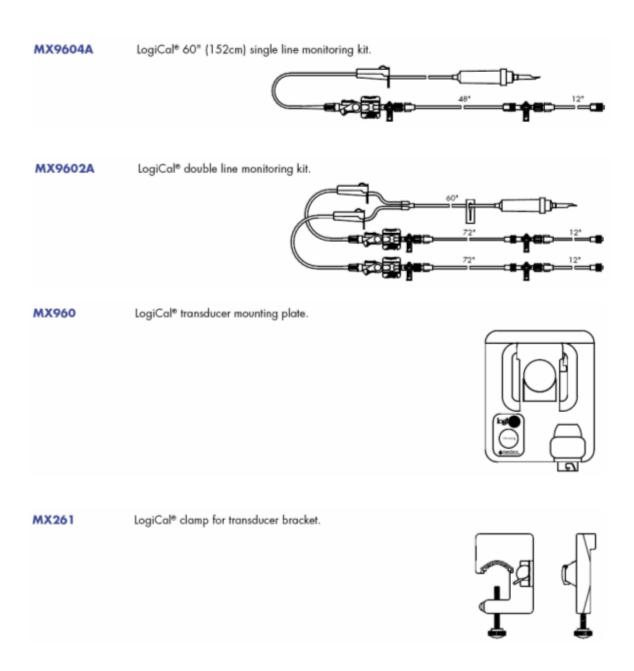
SETTINGS (Various Settings)

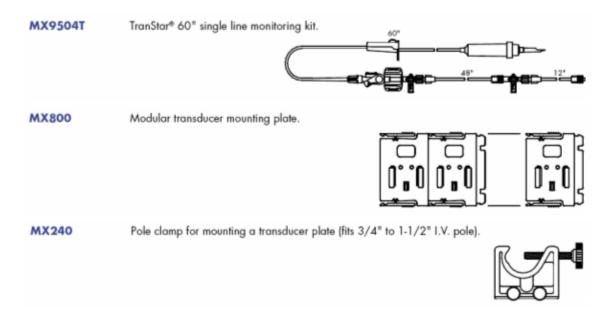

ZERO (Zero-Point Setting)

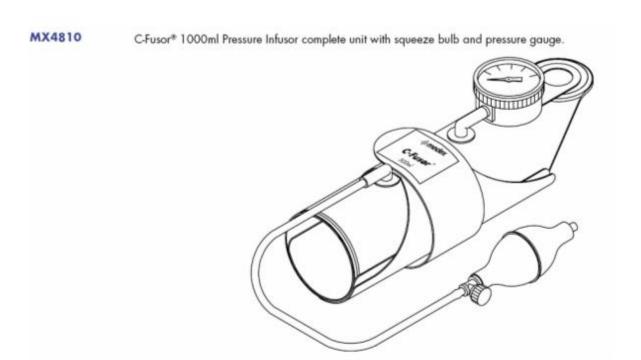
9.1 Description

IBP has an alarming function based on the maximum & minimum alarming values configured by measuring the systolic, diastolic and mean blood pressure values with signal processing of electric signals which are transformed from changes in impedance components according to the changes of blood flow in vessels.

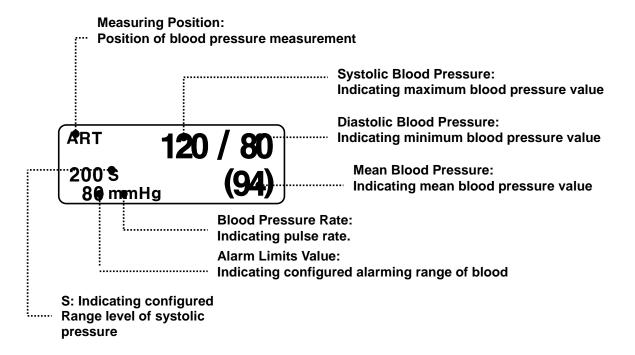
IBP Connectors & Accessories

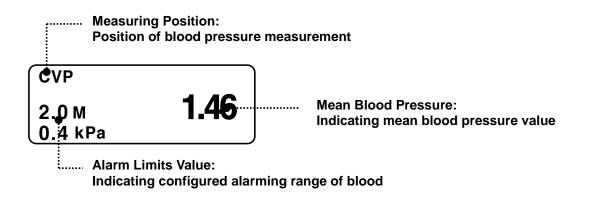

IBP connector


IBP ACCESSARY


MEDEX Kit is used for IBP MONITORING KIT.

LogiCal Disposable Pressure Transducers Cartridges and Monitoring kit


TranStar Disposable Pressure Transducers Cartridges and Monitoring kit



9.2 IBP Data Window

Different data windows are displayed on the screen according to the measuring positions.

9.3 IBP Data Setting

Labels for measuring positions are described on each menu.

CHANGE NAME: Menu to set measuring position

SCALE: Menu to set size of measurement waveform on screen.

LIMITS: Menu to set alarming range.

SETTING: Menu for processing various pressure signals.

ZERO: Menu to set zero-point of Transducer.

UNIT SELECT: Menu to unit change.

MAIN MENU	CHANGE NAME :ART	SCALE: 160	ALARM
		ZERO	SETTING

CHANGE NAME (Setting Measuring Position)

It performs the name changing function for a measuring position to monitor.

The setting positions are ART, FEM, PAP, RAP, LAP, UAP, UVP, CVP, ICP and OTHER.

MAIN MENU	CHANGE NAME :ART	SCALE: 160	ALARM	
		ZERO	SETTING	
MAIN MENU	CHANGE NAME :ART	> ART FEM PAP RAP LAP	UAP UVP CVP ICP BP1	

List & Description of IBP Measurement Parameter Label

Parameter Window, Scales Menu Window or Alarm Limits Pop-up Menu will appear according to the Labels.

IBP displays the measuring positions based on 10 labels shown in the below table.

The below table shows the names for each label and the descriptions to be displayed on the **Parameter Window**.

Select 'OTHER' for a measuring position not in the listed positions.

LABEL	DESCRIPTION	DISPLAY VALUE	
ART	Arterial Pressure	- Systolic, Diastolic and Mean	
FEM	Femoral Pressure	- Systolic, Diastolic and Mean	
PAP	Pulmonary Artery Pressure	- Systolic, Diastolic and Mean	
CVP	Central Venous Pressure	- Mean	
LAP	Left Arterial Pressure	- Mean	
RAP	Right Arterial Pressure	- Mean	
ICP	Intracranial Pressure	- Mean	
OTHER	Other (IBP1, IBP2)	- Mean	
UAP	Umbilical Artery Pressure	- Systolic, Diastolic, and Mean	
UVP	Umbilical Venous Pressure	- Mean	

SCALE (Setting size of measurement waveform)

You can set the pressure range for measurement waveform on this menu.

The selectable values mean the maximum blood pressure range value that can be shown in a waveform.

veioiiii.			
MAIN MENU	CHANGE NAME :ART	SCALE: 160	ALARM
		ZERO	SETTING
MAIN MENU	SCALE: 160	300 200 > 160 100	80 60 30

Alarming Limits for ART

Alarming limits vary according to measuring positions.

The settable alarming range for systolic pressure, diastolic pressure and mean pressure is - $50 \sim 350 \text{mmHg}$.

IBP1 ALARM LIMIT & LEVEL							
RETURN UNITS		LOW	HIGH	ALARM ON/OFF	LEVEL		
ART-S	mmHg	70	150	OFF	MEDIUM		
ART-M	mmHg	50	115	ON	MEDIUM		
ART-D	mmHg	40	100	ON	MEDIUM		
ART-PR	ВРМ	50	150	ON	MEDIUM		
MAIN CHANGE NAME MENU :ART			SCALE: 160	A	LARM		
			ZERO	SE	ETTING		

The below table shows the settable values of standard alarm limits and scales of parameters for label setting.

December		Adult			Neonatal		
Parameter	Low	High	Scale	Low	High	Scale	
ART-S	70	150		40	100		
ART-D	40	100	160	20	50	100	
ART-M	50	115	160	30	70	100	
ART-PR	50	150		50	170		
FEM-S	70	150		40	100		
FEM-D	40	100	100	20	50	100	
FEM-M	50	115	160	30	70	100	
FEM-PR	50	150		50	170		
UAP-S	70	150		40	100		
UAP-D	40	100	1.00	20	50	100	
UAP-M	50	115	160	30	70	100	
UAP-PR	50	150		50	170		
PAP-S	20	50		40	100		
PAP-D	5	30	60	20	50	60	
PAP-M	10	40		30	70	00	
PAP-PR	50	150		50	170		
CVP-S	0	300		0	300		
CVP-D	3	15		3	15	20	
CVP-M	0	300	30	0	300	30	
CVP-PR	50	150		50	170		
RAP-S	0	300		0	300		
RAP-D	3	15	30	3	15	30	
RAP-M	0	300	30	0	300	30	
RAP-PR	50	150		50	170		
LAP-S	0	300		0	300		
LAP-D	3	15	30	3	15	30	
LAP-M	0	300	30	0	300	30	
LAP-PR	50	150		50	170		
UVP-S	0	300		0	300		
UVP-D	3	15	20	3	15	20	
UVP-M	0	300	30	0	300	30	
UVP-PR	50	150		50	170		
ICP-S	0	300		0	300		
ICP-D	3	15	20	3	15	20	
ICP-M	0	300	- 30	0	300	- 30	
ICP-PR	50	150		50	170	1	
BP1(BP2)-S	0	300		0	300		
BP1(BP2)-D	3	15	00	3	15	6.0	
BP1(BP2)-M	0	300	30	0	300	30	
BP1(BP2)-PR	50	150	1	50	170	1	

IBP SETTING (Setting Various Functions)

Other menus are to be applied for special functions to process pressure signals in various ways.

MAIN MENU	CHANGE NAME :ART	SCALE: 160	ALARM
		ZERO	SETTING
MAIN MENU	BP FILTER: OFF		
PREV MENU			

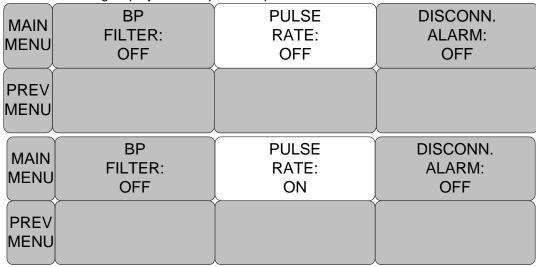
Setting three labels of ART, FEM and UAP displaying PULSE-RATE among labels, the functions of PULSE-RATE DISPLAY and DISCONNECT ALARM will be added.

MAIN MENU	BP FILTER: OFF	PULSE RATE: OFF	DISCONN. ALARM: OFF
PREV MENU			

BP FILTER: It filters waveforms by selecting three frequency bands.

OFF 0Hz ~ 40Hz

12Hz 0Hz ~ 12Hz Generally recommended for monitoring


20Hz 0Hz ~ 20Hz Used for processing waveform components of higher

frequency. Pressure value can be increased with this filter.

MAIN MENU	BP FILTER: OFF	PULSE RATE: OFF	DISCONN. ALARM: OFF
PREV MENU			

PULSE RATE: Setting display of blood pressure pulse rate.

CAL. TRANSDUC: A function to adjust a Transducer error on the monitor

A function to adjust an error value based on the other index manometer.

How to Adjust

- 1. Select a menu by pressing the knob switch key.
- 2. Measure blood pressure along with another index manometer.
- 3. Compare the measured values of 'mmHg' for both manometers.
- 4. Adjust the error value on the parameter menu screen by turning knob switch.
- 5. Terminate the menu by pressing the knob switch key again.

DISCONN ALARM: (Alarming function for disconnection)

DISCONN ALARM MENU will be displayed when measurement label is set for ART, FEM and UAP.

This function will be activated upon the following two conditions.

- 1. In case MEAN PRESSURE is not higher than 25mmHg.
- 2. In case the Disconnect Alarm is set 'ON'.

Midium alarming sound will be generated when the **DISSCONNECTED ALARM** is activated, and the alarming message "DISCONNECTED" will be displayed on the parameter screen.

MAIN MENU	BP FILTER: OFF	PULSE RATE: OFF	DISCONN. ALARM: OFF
PREV MENU			
MAIN MENU	BP FILTER: OFF	PULSE RATE: OFF	DISCONN. ALARM: ON
PREV MENU			

ART
200 S
80 mmHg

Troubleshootings for a case the measured value is different from the expected value

Description	Action to Take	
In case there are air bubbles in tubes	Remove the air bubbles	
In case an extension tube is connected	Remove the extension tube	
In case of using blood pressure transducer	Check position of transducer	
with a different sensitivity		
For other cases	Perform zero-point adjustment	

ZERO ART: (Zero-point Adjustment)

Use ZERO option to set the zero-point of Transducer.

MAIN MENU	CHANGE NAME :ART	SCALE: 160	ALARM
		ZERO	SETTING

Procedures (Zero reference)

- 1) Close the transducer stopcock on the patient's side.
- 2) Open the venting stopcock on the air side.
- 3) Press the knob switch on the monitor panel.
- 4) Draw a line with the current input data in IBP area of WAVE WINDOW according to the Wave Base Line. And accord the wave line with the data.
- 5) Set the data as '0' on the parameter screen.
- 6) Check if Zero reference is carried out. (Check the pressure parameter on the message window.)
- 7) Close the venting stopcock on the air side.
- **8**) Open the transducer stopcock on the patient side. The pressure value should be displayed on the pressure parameter screen in a few seconds.

<u>Troubleshootings</u> for a case that blood pressure value is not displayed on screen

Description	Action to Take
In case of 'out of measurement range'	Check the measurement conditions.
situation	
In case blood pressure transducer is	Replace the damaged transducer with new
damaged	one

Warning

All parts, except Transducer, should not be conductive. Otherwise discharge energy may induce a shock to operators during cardioversion.

Note

- Check if there is a scratch on the catheter balloon before using.
- Do not reuse disposal parts and accessories.
- Do not use Saline packs with passed expiration dates.
- Do not use pressure measurement kits in torn packages.
- Remove all air in the saline pack by squeezing it. Otherwise it may cause errors in blood pressure band and may go into the blood vessels.

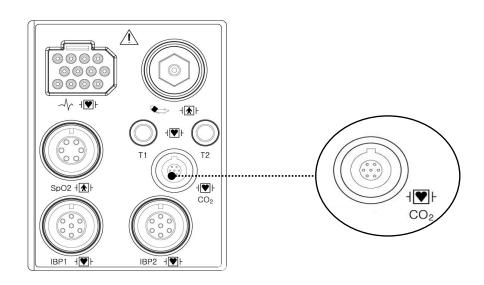
10. EtCO2

10.1 INTRODUCTION

Position of EtCO₂ Connector and Accessory EtCO₂ ACCESSORY

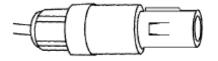
10.2 EtCO₂ Parameter Window

10.3 EtCO₂ Parameter Setting Menu


ALARM
SWEEP SPEED
WAVEFORM SCALE:
APNEA DETECT
SETTINGS
ZERO

10.4 TROUBLESHOOTING

10.1 Introduction


ETCO2(End-Tidal CO2) is a device to see the concentration of end-tidal carbon dioxide, which uses a method of measurement based on the non-dispersed IR absorption of CO2 using IR ray by sampling a certain part of respiration through pipe during respiration.

EtCO2 connector position and accessory (Sidestream, Respironics) EtCO2 Connector

LoFlo sidestream CO2 sensor and connector

Sidestream sensor

Sidestream sensor connector

EtCO2 accessories for sidestream applications

EtCO2 monitoring accessory uses the accessories for LoFlo™ sidestream module of Respironics Company.

The airway adapters for sidestream intubated applications			
3473ADU-00		Airway Adapter	Weight: 4.5 grams
		Kit w/	Deadspace – adds approximately 7
		Dehumidification	cc of deadspace
		Tubing	Intended for use when
			monitoring patients with ET
			Tube sizes >4.0 mm
3473INF-00		Airway Adapter	Weight: 5.8 grams
		Kit w/	Deadspace – adds approximately 1
		Dehumidification	cc of deadspace
		Tubing	Intended for use when
			monitoring patients with ET
			Tube sizes <=4.0 mm

Connecting the LoFlo Sample Kit

1. The sample cell of the sampling kit must be inserted into the sample cell receptacle of the LoFlo CO₂ Module as shown in Figure 1. A "click" will be heard when the sample cell is properly inserted.

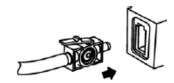


Figure 1

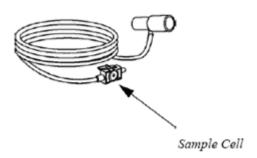
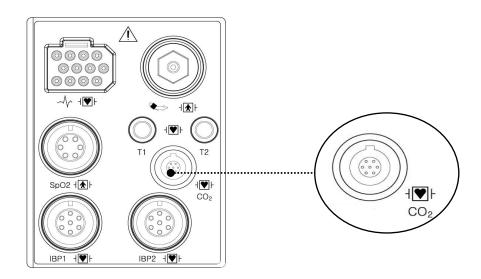



Figure 2

- 2. Inserting the sample cell into the receptacle automatically starts the sampling pump. Removal of the sample cell turns the sample pump off.
- 3. To remove the sampling kit sample cell from the sample cell receptacle, press down on the locking tab and pull the sample cell from the sample cell receptacle.

EtCO2 connector position and accessory (Mainstream, Respironics) **EtCO2 Connector**

CAPNOSTAT 5 mainstream CO2 sensor and connector

Mainstream sensor connector

EtCO2 accessories for mainstream applications

EtCO2 monitoring accessory uses the accessories for CapnoStat 5 microstream sensor of Respironics Company.

10. EtCO2 Rev 3.1 165

The airway ac	The airway adapters for mainstream intubated applications			
6063-00		Single-Patient Use Airway Adapter		
6312-00		Single-Patient Use Airway Adapter		
7007-00	400	Reusable Airway Adapter		
7053-00		Reusable Airway Adapter		

Connecting the CAPNOSTAT® 5 CO2 Sensor to the Host System

1. Insert the CAPNOSTAT 5 CO₂ Sensor connector into the receptacle of the host monitor as shown in Figure 1.

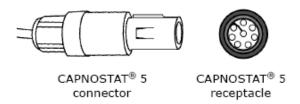
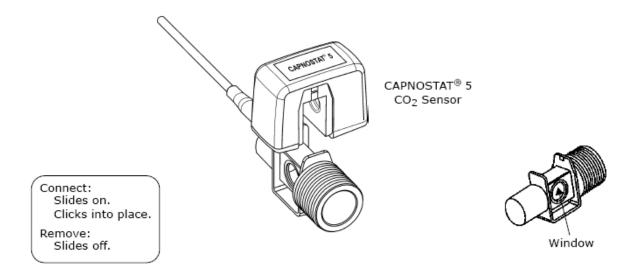
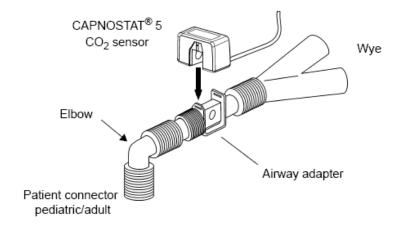
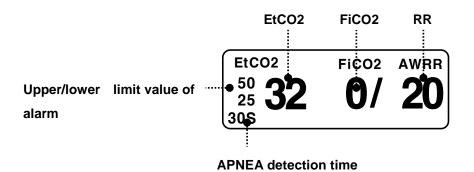



Figure 1


- 2. Make sure the arrows on the connector are at the top of the connector and line up the two keys of the connector with the receptacle and insert.
- 3. To remove the connector, grasp the body portion of the connector back and remove.

Note: Do not remove by pulling cable.


Shown below is the CAPNOSTAT 5 CO₂ Sensor connection to a Respironics Novametrix CO₂ adapter

Shown below is the CAPNOSTAT 5 CO2 Sensor with a patient circuit:

10.2 EtCO2 Parameter Window

S: Display of apnea setting time in second unit

Upper/lower limit value of alarm: Display of alarm setting range value for concentration of CO₂

EtCO2: Display of concentration value of carbon dioxide

awRR: Display of the number of respirations per miniute

FICO2: Display of concentration value of carbon dioxide during inspiration

Note EtCO₂ waveform is always displayed if cable is connected.

10.3 EtCO2 Parameter Setting Menu

ALARM: A menu to set the alarm limit and sound.

SWEEP SPEED: EtCO2 sweep speed is changeable to 6.25, 12.5, 25mm/s. WAVEFORM SCALE: A menu to set the screen scale of measured waveform.

APNEA DETECT: Deciding function of activating Apnea Alarm. SETTINGS: A menu to handle the information of EtCO2 signal

ZERO: When a new sensor is connected, the message "ZERO REQUIRED" is displayed.

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	WAVEFORM SCALE: 40mmHg
	APNEA DETECT: OFF	SETTINGS	ZERO

ALARM LIMIT(Upper/lower limit value of alarm)

Upper/lower limit value of alarm differs depending on the position of measurement.

The basic setting range of alarm setting value for EtCO2, FiCO2, awRR, APNEA.

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	WAVEFORM SCALE: 40mmHg
	APNEA DETECT: OFF	SETTINGS	ZERO
MAIN MENU	ALARM LIMIT	ALARM SOUND: OFF	
PREV MENU			

EtCO2 ALARM LIMIT					
RETURN	UNITS	LOW	HIGH		
EtCO2	mmHg	25	50		
FiCO2	mmHg	0	5		
AWRR	RPM	10	30		
APNEA	SEC	0	20		

The following table shows standard alarm limit of parameter and setting value of scale when setting the label.

D		Adult			Neonatal	
Parameter	Low	High	Scale	Low	High	Scale
EtCO2	0	98		0	98	
FiCO2	0	20	40	0	20	40
AWRR	0	100	40	0	100	40
APNEA	0	40		0	40	

EtCO2 SWEEP SPEED

EtCO2 speed is 6.5mm/s.

Speed is changeable to 6.25, 12.5, 25mm/s.

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	WAVEFORM SCALE: 40mmHg
	APNEA DETECT: OFF	SETTINGS	ZERO

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	>	6.25mm/s 12.5mm/s
	APNEA DETECT: ON			25mm/s

WAVEFORM SCALE (Measured waveform scale setting)

This sets the range of measured waveform versus pressure.

Selectable numerical value means the maximum pressure range value that is shown with waveform.

Pressing the knob switch key and then selecting the desired range value displays the selected pressure range value below the upper dotted line among two dotted lines in the left middle of wave window.

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	WAVEFORM SCALE: 40mmHg
	APNEA DETECT: OFF	SETTINGS	ZERO
MAIN MENU	ALARM	WAVEFORM SCALE: 40mmHg	> 40mmHg 50mmHg
	APNEA DETECT: OFF		60mmHg 80mmHg 100mmHg

ZERO

When a new sensor is connected, the message "ZERO REQUEMENT" is displayed.

This is required anytime a new sensor is connected to the monitor.

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	WAVEFORM SCALE: 40mmHg
	APNEA DETECT: OFF	SETTINGS	ZERO

- 1. Set the Host to the zeroing function.
- 2. Connect the CAPNOSTAT 5 CO2 Sensor
- 3. Place the CAPNOSTAT 5 CO2 Sensor onto a clean and dry CO2 adapter that is exposed to room air and away from all sources of CO2, including the ventilator, the patient's breath and your own.
- 4. Start the adapter zero. The maximum time for a CAPNOSTAT zero is 40 seconds. The typical time for a zero is 15~20 seconds.

Note

For best result, connect the CAPNOSTAT 5 CO2 Sensor to an adapter and wait 2 minutes before performing the Adapter Zero procedure.

SETTINGS (Various setting)

Different menus are applied to provide menu and information for handling the EtCO2 module.

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	WAVEFORM SCALE: 40mmHg
	APNEA DETECT: OFF	SETTINGS	ZERO
MAIN MENU	MODULE SETUP	MODULE INFO	MODULE RESET
PREV MENU			

MODULE SETUP			
RETURN	CONTENTS		
BAROMETRIC PRESSURE	760 mmHg		
GAS TEMPERATURE	36.5 ℃		
NO BREATH DETECT TIMEOUT	0 SEC		
O2 COMPENSATION	21 %		
ANESTHETIC AGENT	0.0 %		
BALANCE GAS	ROOM AIR		
CURRENT ETCO2 TIME PERIOD	0000-00-00-00		
CURRENT CO2 UNIT	mmHg		
SLEEP MODE	NORMAL OP		
ZERO GAS TYPE	ZERO ON N2		
DISABLE SAMPLING PUMP	NORMAL OP		

BAROMETRIC PRESSURE: This setting is used to set current Barometric Pressure.

GAS TEMPERATURE: This setting is used to set temperature of the gas mixture. This

setting is useful when bench testing using static gasses where

the temperature is often room temperature or below.

NO BREATH DETECT TIMEOUT: This setting is used to set the no breaths detected time-out. This

time-out is the time period in seconds following the last detected breath at which the Capnostat will signal no breaths detected.

O2 COMPENSATION
ANESTHETIC AGENT

BALANCE GAS: Use this setting to correct for the compensation of the gas

mixture administered to the patient. Anesthetic agent is ignored

when the balance gas is set to helium.

CURRENT ETCO2 TIME PERIOD: This setting is used to set the calculation period of the ETCO_2

value. The end-tidal CO₂ value is the highest peak CO₂ value of all end of expirations (end of breaths) over the selected time period. If less than two breaths exist in the selected time period, the value will be the maximum ETCO₂ value for the last two

breaths.

CURRENT CO2 UNIT: Continuous waveform mode commands (the CO2 Waveform

Mode command [command 80h] and the CO₂/O₂ Waveform Mode command [command 90h]) MUST NOT be active when this command is used otherwise this command will be ignored and the setting will remain unchanged.

and the setting will remain unchanged.

SLEEP MODE: Sleep mode is used to save power when the host monitor is in

standby mode. There are two sleep modes available for the Capnostat. Using Sleep Mode 1 maintains the heaters so the Capnostat is able to run immediately after exiting the sleep mode. Mode 2 will require the Capnostat to go through its warm

up sequence when exiting this mode and a delay will be

introduced until the system has stabilized.

ZERO GAS TYPE: When performing a zero on room air, this setting should be set

to room air (the default). Only change to nitrogen (N_2) when performing a zero on 100% N_2 gas; this is provided for use in a

laboratory environment.

DISABLE SAMPLING PUMP: This setting allows the pump to be forced off. In Normal

Operating Mode, the pump will be turned on when the sampling cell is connected and no pneumatic system errors are detected.

In Pump Disabled Mode, the pump will remain off in all

circumstances.

MODULE INFO

This is information for handling the EtCO2 module.

MAIN	MODULE	MODULE	MODULE
MENU	SETUP	INFO	RESET
PREV MENU			

MODULE INFORMATION SET		
RETURN	CONTENTS	
SENSOR PN	1022054	
OEM ID	0X01	
SENSOR SN	SN6412	
HW REVISION NUM	A	
TOTAL USE TIME	148830 MIN.	
LAST ZERO TIME	0 MIN.	
PUMP TOTAL USE TIME	141540 MIN.	
PUMP MAX USE TIME	1440000 MIN.	

SENSOR PN(part number): The sensor part number

OEM ID: The id is a 7bit identifier which is set at the factory to a unique value for each OEM.

SENSOR SN: The serial number of the module.

HW REVISION NUM: The hardware version number of the module.

TOTAL USE TIME: Total use time of the module.

LAST ZERO TIME: This is the total time that has elapsed with the sensor in service the last zero.

PUMP TOTAL USE TIME: This is the total time the pump has been on.(LoFlo only)

PUMP MAX USE TIME: This value indicates the maximum rated lifetime of the sampling pump.

(LoFlo only)

MODULE RESET

This command is used to cause a system watchdog reset in the sensor. When this command is issued, the system enters an infinite loop and a watchdog timer resets the system one second later.

MAIN	MODULE	MODULE	MODULE
MENU	SETUP	INFO	RESET
PREV MENU			

APNEA DETECT

Turn the APNEA detection alarm off and on

MAIN MENU	ALARM	SWEEP SPEED: 6.25mm/s	WAVEFORM SCALE: 40mmHg
	APNEA DETECT: OFF	SETTINGS	ZERO

APNEA ALARM: This performs a function to set the display of apnea message alarm.

This displays a "apnea" message at the center of parameter window as shown in the figure below with apnea alarm on in case of apnea until the set apnea period is passed through.

EtCO2		
50 30	APNEA	
20\$		

With apnea alarm off, measured values are displayed instead of message.

EtCO2		FiCO2	EtCO2
50 25	0	0/	0
30\$		•	

Warning

If defibrillation is performed while doing CO2 monitoring, remove the CO2 FilterLine from patient Getting in touch with sensor cable without removing the FilterLine can result in serious electrical burn, shock, or injury due to electric discharge energy.

Note

In the following monitoring conditions, the measured values may be inaccurate. Read the measured values carefully.

- 1. When using this in an environment of using nitrous oxide gas of high concentration
- 2. When using this in an environment where abrupt temperature change takes place
- 3. When using this in an environment with severely high humidity.

Caution

- The measured values may be inaccurate when using this equipment for patients who have very fast or irregular respiration.
- When measuring CO2 from the patient under the anesthesia, check it when gas mixture comes in. Otherwise, the measured result values may be inaccurate.
- When using a anesthesia machine that uses a volatile anesthetic, CO2 values may be inaccurate.

10.4 TROUBLESHOOTING

Following is a list of some of the message that may appear on the monitor when monitoring CO2. The message should clear when normal operating criteria are met or a solution is found.

* SENSOR OVER TEMP

- Cause: The sensor temperature is greater than 40°C
- Solution : Make sure sensor is not exposed to extreme heat(heat lamp,etc.)

* SENSOR FAULTY

- Cause: One of the following conditions exist : Capnostat Source Current Failure EEPROM Checksum Faulty , Hardware Error
- Solution : Check that the sensor is properly plugged in. Reinsert or reset the sensor if necessary.

* SENSOR WARM UP

- Cause: Sensor under temperature, Temperature not stable, Source Current unstable
- Solution : This error condition is normal at startup. This error should clear when the warm up is complete.

* CHECK SAMPLING LINE

- Cause: This error occurs whenever the pneumatic pressure is outside the expected range.
- Solution : Check that the sampling line is not occluded or kinked. Replace the sample line

* ZERO REQUIRED

- Cause : Zero Required , Zero Error
- Solution: To clear, check airway adapter and clean if necessary. If this does not correct the
 error, perform an adapter zero. If you must adapter zero more than once, a possible
 hardware error may exist.

* CO2 OUT OF RANGE

- Cause : The value being calculated is greater than the upper CO2 limit(150mmHg)
- Solution : If error persists, perform a zero.

* CHECK AIRWAY ADAPTER

- Cause: Usually caused when the airway adapter is removed from the Capnostat or when there
 is an optical blockage on the windows of the airway adapter. May also be caused by
 failure to perform Capnostat zero to when adapter type is changed.
- Solution : To clear, clean airway adapter if mucus or moisture is seen. If the adapter is clean, perform a Capnostat zero.

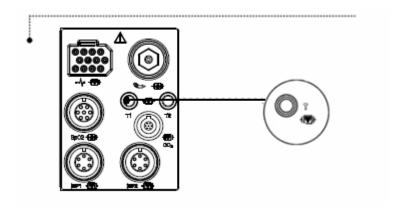
11. TEMPERATURE

11.1 Outline

Temperature Connector and Measuring Cable

11.2 Temperature Data Window11.3 Temperature Data Setup

ALARM LIMIT UNIT SELECT

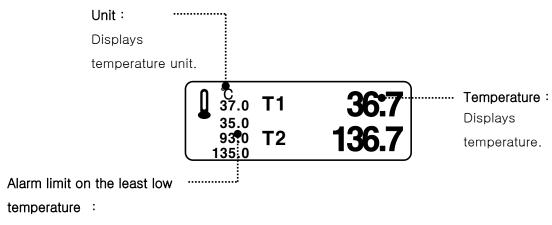

Rev. 3.1 11.TEMPERATURE 179

11.1 Outline

This function is used to indicate the changes of resistance generated by the changes of temperature in numbers. The function involves the process of transferring the changes into electric signals.

Temperature Connector and Measuring Cable

Temperature Connector

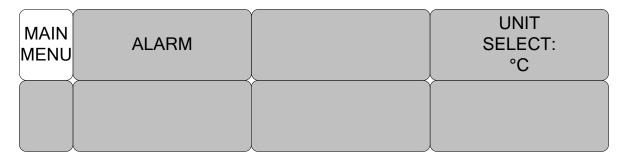


Note

Temperature probe is correctly positioned and fixed to do not disconnect on the patient. Temperature cable is attached to the monitor.

11.2 Temperature Data Window

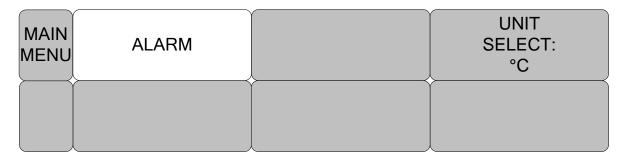
Indicates temperature limits


Note

The minimum measuring time required to obtain accurate readings at the specific body site is at least 3 minutes.

11.3 Temperature Data Setup

ALARM: Temperature measurement alarm set


UNIT: Temperature measurement unit set

ALARM

Alarm menu provide ALARM LIMIT and ALARM.

Setting numeric value is 0.0° ~ 50.0° .

- 1. Move the ▶ mark to select either RETURN or TEMP, and press.
- 2. After pressing the cursor at TEMP, move it to LOW, and press.
- 3. When the color has changed, move the cursor again to select a target value, and press.
- 4. Move the cursor to HIGH and press. After the color has changed, move the cursor again to select a target value, and press. (One may choose HIGH first to get the same result.)
- 5. Select RETURN to get out of the menu.

	TEMP ALARM LIMIT & LEVEL				
RETURN	UNITS	LOW	HIGH	ALARM ON/OFF	LEVEL
TEMP1	ဗ	30.0	42.0	OFF	MEDIUM
TEMP2		30.0	42.0	ON	MEDIUM
					l J

UNIT SELECT

Able to select unit with °C, °F.

MAIN MENU	ALARM	UNIT SELECT: °C
MAIN MENU	ALARM	UNIT SELECT: °F

12. PRINT

12.1 Print

Printer and Heat Sensitivity Paper Function and Setup Menu

12.2 Paper Change

12.1 Print

Printer and Heat Sensitivity Paper

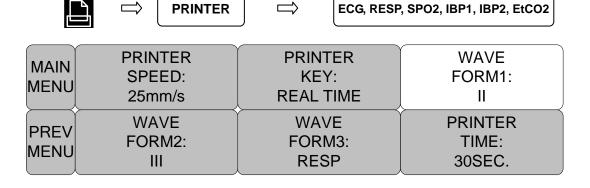
A printer used to print data onto thermal paper.

Size of the thermal paper roll: 58mm wide x 38mm in diameter any thermal paper of same size can be used for the printer.

Side View of Printer

Function and Setup Menu

MAIN MENU	PRINTER SPEED: 25mm/s	PRINTER KEY: REAL TIME	WAVE FORM1: II
PREV	WAVE	WAVE	PRINTER
	FORM2:	FORM3:	TIME:
	III	RESP	30SEC.


- 1. Press the PRINT Key for continuous printing.
- 2. Select Printing Speed 25, 50 mm/s.

MAIN MENU	PRINTER SPEED: 25mm/s	PRINTER KEY: REAL TIME	WAVE FORM1: II
PREV	WAVE	WAVE	PRINTER
	FORM2:	FORM3:	TIME:
	III	RESP	30SEC.
MAIN MENU	PRINTER SPEED: 50mm/s	PRINTER KEY: REAL TIME	WAVE FORM1: II
PREV	WAVE	WAVE	PRINTER
	FORM2:	FORM3:	TIME:
	III	RESP	30SEC.

3. Set up ALARM PRINT in the MORE menu to activate ALARM during printing.

- 4. Data is printed in a selected wave form along with personal information of the patient.
 - 3 channels select 3 parameters to print.

MAIN MENU PREV MENU	WAVE FORM1: II	OFF SPO2 RESP EtCO2 IBP1 IBP2	>	I II III aVR aVL aVF	V1 V2 V3 V4 V5 V6
MAIN MENU PREV MENU	PRINTER SPEED: 25mm/s WAVE FORM2:	PRINTER KEY: REAL TIME WAVE FORM3: RESP		WAVE FORM1 II PRINTE TIME: 30SEC	: R
MAIN MENU PREV MENU	WAVE FORM2: III	OFF SPO2 RESP EtCO2 IBP1 IBP2	>	I II III aVR aVL aVF	V1 V2 V3 V4 V5 V6
MAIN MENU	PRINTER SPEED: 25mm/s	PRINTER KEY: REAL TIME		WAVE FORM ¹ II	
PREV MENU	WAVE FORM2: III	WAVE FORM3: RESP		PRINTE TIME: 30SEC	
MAIN MENU	WAVE FORM3: RESP	OFF SPO2 > RESP		 	V1 V2 V3
PREV MENU		EtCO2 IBP1 IBP2		aVR aVL aVF	V4 V5 V6

PRINTER TIME

This is configuration of printed time in normal printing.

If the print out is not stopped in manual by PRINTER KEY, BM5 print out for setup time after starting print out with PRINTER KEY. The configuration of time could be setup with 4 types in CONTINUOUS, 10 sec, 20 sec and 30 sec. The configuration of PRINTER KEY(Real-time/Delayed time) is applied at print out with PRINTER TIME configuration.

MAIN MENU	PRINTER SPEED: 25mm/s	PRINTER KEY: REAL TIME	WAVE FORM1: II
PREV MENU	WAVE FORM2: III	WAVE FORM3: RESP	PRINTER TIME: 30SEC.
MAIN MENU	PRINTER SPEED: 25mm/s	PRINTER TIME: 30SEC.	> CONT. 10SEC.
PREV	WAVE FORM2: III		20SEC. 30SEC.

PRINTER KEY

This menu is setup printing time delay in normal printing.

There are two menus for time configuration. One is Real-time, another is Delayed Time. Real-time: This configuration makes printing out the newest data when the Printer Key is pushed.

Delayed time: This configuration makes printing out the data after 5 seconds from the Printer Key is pushed.

MAIN MENU	PRINTER SPEED: 25mm/s	PRINTER KEY: REAL TIME	WAVE FORM1: II
PREV MENU	WAVE FORM2: III	WAVE FORM3: RESP	PRINTER TIME: 30SEC.

MAIN MENU	PRINTER SPEED: 25mm/s	PRINTER KEY: DELAY	WAVE FORM1: II
PREV MENU	WAVE FORM2: III	WAVE FORM3: RESP	PRINTER TIME: 30SEC.

If there is no print sheet, no paper icon of

Thermal Paper Storage

To avoid fading of traces or deterioration, follow these precautions:

Note

These precautions apply to both unused paper as well as paper that has already been run through the printer.

- Store in cool, dark locations. Temperature must be below 27°C (80°F). Relative humidity must be between 40% and 65%.
- · Avoid exposure to bright light or ultraviolet sources such as sunlight, fluorescent, and similar lighting which causes yellowing of paper and fading of tracings.
- AVOID CONTACT WITH: cleaning fluids and solvents such as alcohols, ketones, esters, ether, etc.
- DO NOT STORE THERMAL PAPER WITH ANY OF THE FOLLOWING:
 - · carbon and carbonless forms.
 - non-thermal chart papers or any other products containing tributyl phosphate, dibutyl phthalate, or any other organic solvents. Many medical and industrial charts contain these chemicals.
 - · document protectors, envelopes, and sheet separators containing polyvinyl chloride or other vinyl chlorides.
- DO NOT USE: mounting forms, pressure-sensitive tapes or labels containing solvent-based adhesives.

To assure MAXIMUM TRACE IMAGE LIFE, thermal paper should be stored separately in: manilla folders, polyester or polyimide protectors.

Plastic document protectors, envelopes, or sheet separators made of polystyrene, polypropylene, or polyethylene will not degrade thermal traces in themselves. However, these materials afford no protection against fading from external causes.

Paper manufacturers advise us that these thermal products should retain their traces when properly imaged and stored for about 3-5 years.

If your retention requirements exceed these guidelines, we recommend you consider alternate image storage techniques.

12.2 Paper Change

1

Open the window of the printer.

2

Insert the paper roll offered with the product into the printing unit. Place the roll in a proper way so that the printed paper can roll out upwards.

3

Press the printer window until it is properly shut. Inaccurate shutting may cause failure in printing.

13. MESSAGE LIST

Function	Message	Details
ECG	LEAD FAULT	Cable is not properly connected.
000	CHEK PROBE	Patient's finger is off the probe.
SpO ₂	LEAD FAULT	Cable is not properly connected.
RESP	LEAD FAULT	Cable is not properly connected.
RESP	APNEA	APNEA gives an alarm.
	INFLATION FAILURE CHECK CUFF	Cuff hose is not properly connected.
	OVER PRESSURE	Cuff pressure is putting on excessively.
NIBP	DEFLATION FAILURE CHECK CUFF	Cuff is bent, preventing deflation.
	OVER TIME CUFF PRESSURE	Measure time exceeds the preset Level.
	MEASUREMENT ERROR	Measure signal absent
TEMP	LEAD FAULT	Cable is not properly connected.
IBP	CHECK SENSOR DISCONNECTED IMBALANCE	Cable is not properly connected. Cable is not properly connected or low pressure Device isn't zero adjustment
	MODULE OFF	Module is not connected.
	SENSOR WARMUP	Sensor initialization.
	CHECK ADAPTOR	Adaptor is not properly connected.
EtCO2	CHECK LINE	Tube is not properly connected.
	APNEA	The APNEA alarm occurs.
	ZERO IN PROGRESS	Zero adjustment is progress.
	SENSOR FAULTY	Poor sensor measurement.
A1 A DA4	ALARM VOL.OFF	Alarm volume is off.
ALARM	SILENCED	Alarm key is pressed once
	ALARM PAUSE 5MIN	Alarm key is pressed twice
TREND	NO PATIENT DATA	No patient's data input.

Rev. 3.1 13. MESSAGE LIST 192

14. DEFAULT SETTING VALUE

14.1 Adult-ICU Mode

Alarm level

	High	Medium	Low	Message
Asystole	0			
Vfib/VTac	0			
V Tach	0			
ACC VENT	0			
BIGEMINY	0			
COUPLET	0			
IRREGULAR	0			
PAUSE	0			
R ON T	0			
TRIGEMINY	0			
V BRADY	0			
PVC			0	
ST		0		
HR		0		
NIBP - S		0		
NIBP - M		0		
NIBP - D		0		
SpO ₂			0	
SpO ₂ -Rate				0
RR				0
RR-Apnea				0
T1(°C)				0
T2				0
IBP1			0	
IBP2			0	
EtCO2			0	
FiCO2				0

AWRR		0
LEAD FAULT		0
LOW	0	
BATTERY		

Parameter Limits

raiailletei Liili		T
	Low	High
HR	50	150
NIBP-S	80	200
NIBP-M	40	140
NIBP-D	20	120
SpO ₂	90	100
SpO₂-Rate	50	150
RR(RESP)	10	30
RR-Apnea	0	20
T1 ໍ C/ໍ F	30.0/86.0	42.0/107.6
ST	-4.0	4.0
PVC	0	20
T2 C/ F	30.0/86.0	42.0/107.6
IBP1/2-S	70	150
(ART)		
IBP1/2-M	50	115
(ART)		
IBP1/2-D	40	100
(ART)		
IBP1/2-S	0	300
(CVP)		
IBP1/2-M	3	15
(CVP)		
IBP1/2-D	0	300
(CVP)		
IBP1/2-R	50	150
EtCO2	25	50
FiCO2	0	5

Display

Patient Age	Adult
Primary ECG	II
Arrhythemia	LETHAL
Detect Pace	Off
Print Waveform2	Off
Print Waveform3	Off
Alarm Print	Off
NIBP Auto	Off
NIBP Cuff Size	Adult
RR(RESP) Lead	II
Alarm Volume	50%
QRS Volume	Off
Pulse Volume	Off
ECG Lead Fault	Message
SpO ₂ Probe Off	Low Alarm
Units for Height	cm
Units for Weight	kg
Temperature Units	Ů С
NIBP Limit Type	Systolic
ECG Filter	Monitoring
PVC	OFF
ST	OFF

14.2 Neonate-ICU Mode

Alarm level

	High	Medium	Low	Message
Asystole	0			
Vfib/VTac	0			
V Tach	0			
ACC VENT	0			
BIGEMINY	0			
COUPLET	0			
IRREGULAR	0			
PAUSE	0			
R ON T	0			
TRIGEMINY	0			
V BRADY	0			
PVC			0	
ST		0		
HR		0		
NIBP - S		0		
NIBP - M		0		
NIBP - D		0		
SpO ₂			0	
SpO ₂ -Rate				0
RR				0
RR-Apnea				0
T1(°C)				0
T2 [°] C)				0
IBP1			0	
IBP2			0	
EtCO2			0	
FiCO2				0
AWRR				0
LEAD FAULT				0
LOW BATTERY		0		

Parameter Limits

	Low	High
HR	50	170
NIBP-S	40	100
NIBP-M	30	70
NIBP-D	20	60
SpO ₂	88	100
SpO ₂ -Rate	50	170
RR(RESP)	15	100
RR-Apnea	0	15
T1 ໍ C/ໍ F	30.0/86.0	42.0/107.6
ST	-4.0	4.0
PVC	0	20
T2 C/ċ F	30.0/86.0	42.0/107.6
IBP1/2-S	40	100
(ART)		
IBP1/2-M	30	70
(ART)		
IBP1/2-D	20	60
(ART)		
IBP1/2-S	0	300
(CVP)		
IBP1/2-M	3	15
(CVP)		
IBP1/2-D	0	300
(CVP)		
IBP1/2-R	50	170
EtCO2	25	50
FiCO2	0	5

Display

Patient Age	NEONATE
Primary ECG	II
Arrhythemia	LETHAL
Detect Pace	Off
Print Waveform2	Off
Print Waveform3	Off
Alarm Print	Off
NIBP Auto	Off
NIBP Cuff Size	NEONATE
RR(RESP) Lead	II
Alarm Volume	50%
QRS Volume	Off
Pulse Volume	Off
ECG Lead Fault	Message
SpO ₂ Probe Off	Low Alarm
Units for Height	cm
Units for Weight	kg
Temperature Units	் C
NIBP Limit Type	Systolic
ECG Filter	Monitoring
PVC	OFF
ST	OFF

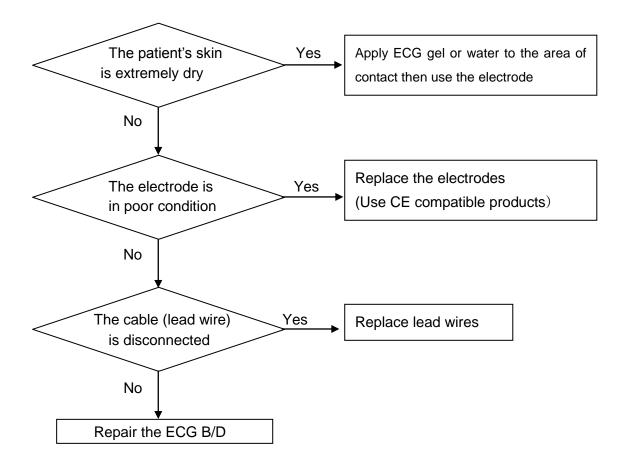
14.3 Pediatric-ICU Mode

Alarm level

	High	Medium	Low	Message
Asystole	0			
Vfib/VTac	0			
V Tach	0			
ACC VENT	0			
BIGEMINY	0			
COUPLET	0			
IRREGULAR	0			
PAUSE	0			
R ON T	0			
TRIGEMINY	0			
V BRADY	0			
PVC			0	
ST		0		
HR		0		
NIBP - S		0		
NIBP - M		0		
NIBP - D		0		
SpO ₂			0	
SpO ₂ -Rate				0
RR				0
RR-Apnea				0
T1(°C)				0
T2° C)				0
IBP1			0	
IBP2			0	
EtCO2			0	
FiCO2				0
AWRR				0
LEAD FAULT				0
LOW BATTERY		0		

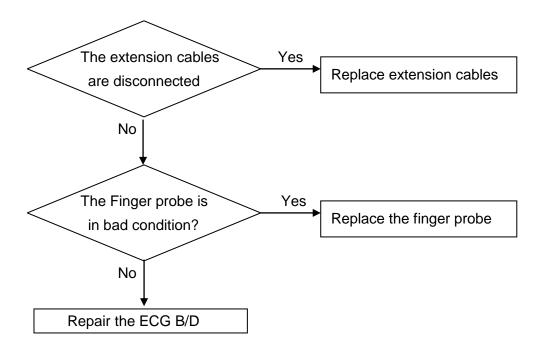
Parameter Limits

	Low	High
HR	50	160
NIBP-S	60	160
NIBP-M	40	120
NIBP-D	30	100
SpO ₂	90	100
SpO ₂ -Rate	50	160
RR(RESP)	15	100
RR-Apnea	0	20
T1 ໍ C/ໍ F	30.0/86.0	42.0/107.6
ST	-4.0	4.0
PVC	0	20
T2 C/ໍ F	30.0/86.0	42.0/107.6
IBP1/2-S	60	140
(ART)		
IBP1/2-M	40	100
(ART)		
IBP1/2-D	30	90
(ART)		
IBP1/2-S	0	300
(CVP)		
IBP1/2-M	3	15
(CVP)		
IBP1/2-D	0	300
(CVP)		
IBP1/2-R	50	160
EtCO2	25	50
FiCO2	0	5

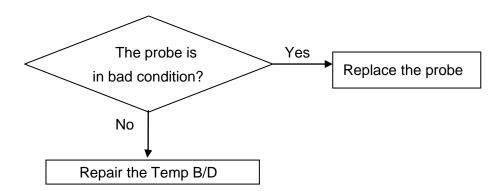

Display

Patient Age	PEDIATRIC
Primary ECG	II
Arrhythemia	LETHAL
Detect Pace	Off
Print Waveform2	Off
Print Waveform3	Off
Alarm Print	Off
NIBP Auto	Off
NIBP Cuff Size	PEDIATRIC
RR(RESP) Lead	II
Alarm Volume	50%
QRS Volume	Off
Pulse Volume	Off
ECG Lead Fault	Message
SpO ₂ Probe Off	Low Alarm
Units for Height	cm
Units for Weight	kg
Temperature Units	் C
NIBP Limit Type	Systolic
ECG Filter	Monitoring
PVC	OFF
ST	OFF

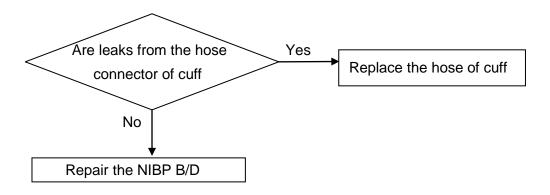
15. TROUBLE SHOOTING

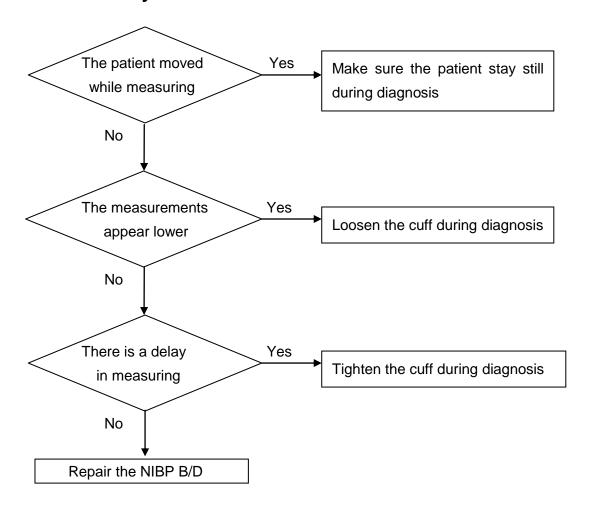

15.1 Noise in ECG

- Gel is dry
- Electrodes does not stick well to skin

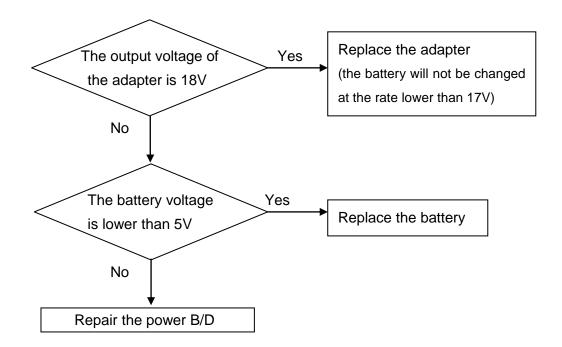


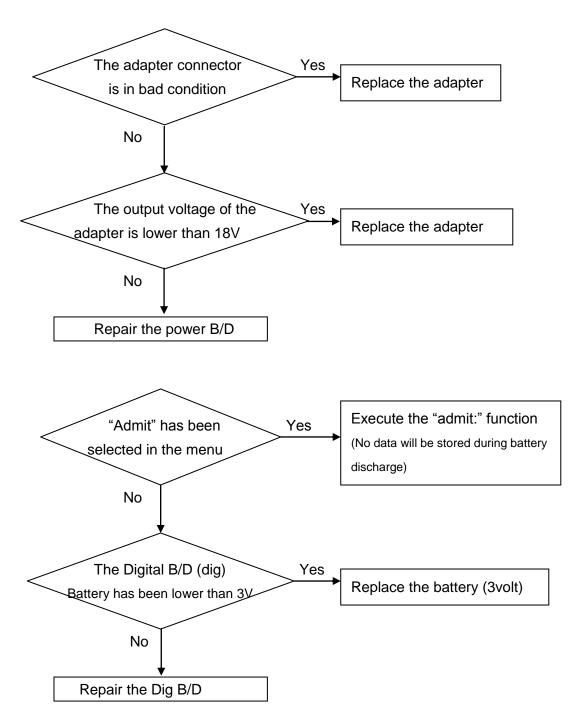
15.2 SpO₂ malfunction


Connectors of the equipments are in bad condition?

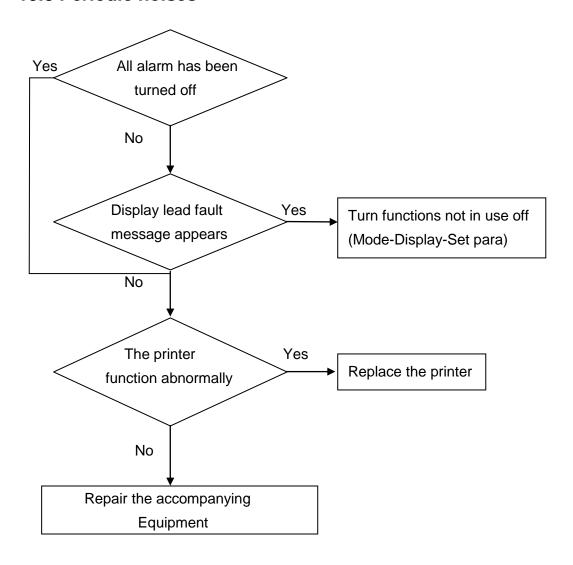

15.3 Temp malfunction

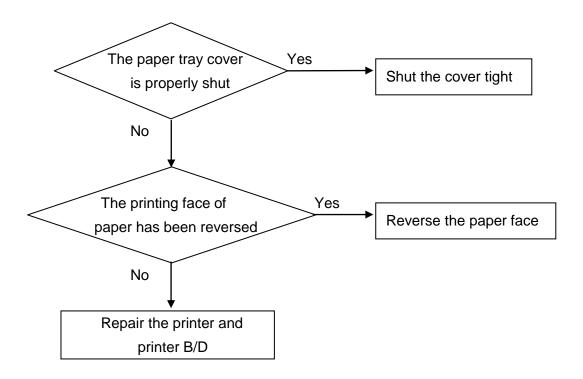
15.4 NIBP malfunction


15.5 Abnormality in NIBP measurements


204

15.6 Failure in battery recharge


(the battery does not fully recharge in 6 hours or more)


15.7 Power failure

15.8 Periodic noises

15.9 Print failure

16. SPECIFICATION

Ease of use

Customization

Special Features

Monitor Environmental Specifications

Power adaptor

Monitor Performance Specifications

Graphical and Tabular Trends

SpO2 Performance Specifications

Respirations Performance Specifications

NIBP Performance Specifications

ECG Performance Specifications

Temperature Unit Performance Specifications

Accessories included

OPTION

Ease of use

- · Battery operation
- · Attached printer
- · Table and graphic trend

Additional Function

- · Able to use auto mobile power supply
- · LAN Connection

Monitor Environmental Specifications

Operating Temperature : 15°C to 40°C (59°F to 104°F)
Storage Temperature : -10°C to 60°C (14°F to 140°F)

· Humidity: 20% to 95% RH

- Operating Attitude: 70(700) to 106Kpa(1060mbar)

Power

- · AC 100-240V (50/60Hz)
- · Adapter 18 V, 2.5 A

Specification

Display, Resolution	10.4" color TFT, 800 x 600 pixels
Dimension, Weight	270(W) x 250(H) x 184.5(D) mm, Approx. 4.0kg
Parameter	ECG, Heart Rate, Respiration Rate, SpO2, Pulse Rate, Systolic BP, Diastolic BP, Mean BP, 2 x Temperature, 2 x IBP, EtCO2, FiCO2, Airway Respiration Rate
Trace	6 waveforms : 2*ECG, SpO2, RR or EtCO2, 2*IBP Sweep speed : 6.25, 12.5, 25, 50 mm/sec
Indicators	Categorized alarms (3 priority levels), Visual alarm lamp handle Heart beat tone, SpO2 pulse pitch tone Battery status, External power LED
Interfaces	DC input connector : 12 to 18VDC, 2.5A Defibrillator Sync. Output :
Battery	Rechargeable Li-ion battery, 1hours for continuous working
Thermal Printer (option)	Speed : 25, 50mm/sec, Paper width : 58mm
Data Storage	168hours trends, 20cases of 10sec alarm waveform
Language	English, French, Spanish, Italian, Germany, Chinese, Russian, Czech, Bulgarian, Portuguese, Romanian, Hungarian, Turkish, Polish
ECG Performance	
Lead type	3-lead, 5-lead, 10-lead(option)
Lead Selection	3-lead : I, II, III 5-lead : I, II, III, aVR, aVL, aVF, V 10-lead: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6

	I
ECG waveforms	3-lead : 1 channel
	5-lead : 3/7 channels 10-lead: 12 channels
Heart Rate Range	Adult : 30 – 300 bpm
riodit itato itango	Neonate/Pediatric : 30 – 350 bpm
Heart Rate Accuracy	\pm 1bpm or \pm 1%, whichever is greater
Sweep speed	6.25, 12.5, 25, 50 mm/sec
Filter	Diagnostic mode : 0.05Hz - 150Hz
	Monitoring mode: 0.5 – 40 Hz
	Surgical mode : 0.5 – 25 Hz
S-T segment detection range	-2.0 to 2.0 mV
Arrhythmia analysis	ASYSTOLE,VTACH,VFIB,BIGEMINY,ACCVENT, COUPLET,IRREGULAR, PAUSE,PVC,RONT,TRIGEMINY,VBRADY, SHORTRUN
Pacemaker Detection Mode	Indicator on waveform display (user selectable)
Protection	Against electrosurgical interference and defibrillation
Respiration Performance	e
Method	Thoracic impedance
Channel selection	RA-LA or RA-LL
Measurement range	5 – 120 Breath per minute
Accuracy	± 1 Breath per minute
Apnea alarm	Yes
SpO2 Performance	
Saturation range	0 to 100%
Saturation accuracy	70 to 100% ± 2 digits 0 to 69% unspecified
Pulse rate range	0 to 254 bpm
Pulse rate accuracy	± 2 bpm
NIBP Performance	·
Method	Oscillometry with linear deflation
Operation Mode	Manual/Automatic/Continuous
Measurement range	Adult Pressure : 20 to 260 mmHg Pediatric Pressure : 20 to 230 mmHg Neonate Pressure : 20 to 120 mmHg
Accuracy	mean error : less than ± 5 mmHg standard deviation : less than 8 mmHg
Temperature Performan	ce
Measurement range	0 to 50℃ (32 to 122°F)
	0 to 50℃ (32 to 122°F) ±1℃
Measurement range	,

Channels	2
Measurement range	-50 to 300mmHg
Accuracy	<100mmHg: ±1mmHg
	>=100mmHg: ±1% of reading
Pulse rate measurement	0 to 300bpm
range Zero balancing	Range: ±200mmHg
_	Accuracy: ±1mmHg
	Drift:±1mmHg over 24hours
Transducer consistivity	5µV/mmHg
•	
Pulse rate measurement	0 to 300bpm
range	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Sidestream CO2 (Option)
Measurement range	0 to 150 mmHg, 0 to 19%
Accuracy	0-40mmHg ± 2 mmHg,
	41-70mmHg \pm 5% of reading
	71-100mmHg $\pm 8\%$ of reading,
	101-150mmHg \pm 10% of reading
Respiration rate	2 to 150 breath per minute
Respiration accuracy	\pm 1breath per minute
Mainstream CO2 (Option	
Measurement range	0 to 150 mmHg, 0 to 19%
Accuracy	0-40mmHg ± 2 mmHg,
	41-70mmHg ±5% of reading
	71-100mmHg $\pm 8\%$ of reading,
	101-150mmHg \pm 10% of reading
Respiration rate	0 to 150 breath per minute
Respiration accuracy	\pm 1breath per minute

Accessories Included:

1. Main body of BM5 (CS, CX) Monitor	1 EA
2. 5-Lead ECG Cable (MECA5(AHA), MECE5(IEC))	1 EA
3. NIBP extension tube	1 EA
4. Reusable Adult NIBP cuff	1 EA
5. SpO ₂ sensor extension cable	1 EA
6. Reusable Adult SpO ₂ sensor	1 EA
7. DC Power Adaptor with Power Cord (18VDC/2.5A, KA1803F52)	1 EA
8. Operator`s Manual	1 EA
9. Chart Paper (PAPER-400)	2 Roll
,	
Option	
Reusable Temperature Probe (Surface/Skin)	1 EA
2. IBP Transducer Set (Disposable/Reusable)	1 SET
3. Capnography Station (Microstream EtCO ₂ , Oridion)	1 SET
4. Sidestream EtCO2 Module (Respironics)	1 SET
5. Mainstream EtCO2 Module (Respironics)	1 SET
6. Microstream EtCO ₂ airway adapter aampling kit	1 EA
7. Sidestream EtCO2 airway adapter sampling kit	1 EA
Mainstream EtCO2 airway adapter	1 EA
9. 3-Lead ECG Cable (MECA3(AHA), MECE3(IEC))	1 EA
40 40 Load ECC Cable (MECA40(ALIA), MECE40(IEC))	4 F A

10. 10-Lead ECG Cable (MECA10(AHA), MECE10(IEC))

1 EA

Abbreviations and Symbols

Abbreviations and symbols which you may encounter while reading this manual or using the monitor are listed below with their meanings.

Abbreviations

		Α
A AC ADT ARRYTHM ASYS Auto, AUTO AUX aVF aVL aVR	amps alternating current adult arrhythmia asystole automatic Auxiliary left foot augmented lead left arm augmented lead right arm augmented lead	
ВРМ	beats per minute	В
C CAL cm, CM	Celsius calibration centimeter	С
D DC DEFIB, Defib DIA	diastolic direct current defibrillator diastolic	D
ECG EMC EMI ESU	electrocardiograph electromagnetic compatibility electromagnetic interference electrosurgical cautery unit	E
F	Fahrenheit	F
g	gram	G
HR Hz	heart rate, hour hertz	Н
ICU Inc	intensive care unit incorporated	I
kg, KG	kilogram	K

kPa kilopascal

L liter, left

LA left arm, left atrial

LBS pounds

LCD liquid crystal display LED light emitting diode

LL left leg

М

minute M mean, meter MIN, min minute millimeters MM, mm

MM/S millimeters per second MMHG, mmHg millimeters of mercury

m۷ millivolt

Ν

NIBP noninvasive blood pressure

NEO, Neo neonatal

0

OR operating room

Ρ

PED pediatric

PVC premature ventricular complex

Q

S

U

QRS interval of ventricular depolarization

R

RAright arm, right atrial

RESP respiration RL right leg RR respiration rate

S systolic second sec

arterial oxygen saturation from pulse oximetry SpO2

SYNC, Sync synchronization

SYS systolic

T

Temp, TEMP temperature

٧ precordial lead

volt

V-Fib, VFIB ventricular fibrillation **VTAC** ventricular tachycardia

W

X

multiplier when used with a number (2X)

× Symbols

&	and
0	degree(s)
>	greater than
<	less than
_	minus
#	number
%	percent
±	plus or minus

PRODUCT WARRANTY

Patient Monitor
BM5 (CS, CX)
1 year from date of purchase (2 years in Europe)
Hospital Name : Address : Name : Phone :

Rev. 3.1 217

^{*} Thank you for purchasing BM5 (CS, CX)

* The product is manufactured and passed through strict quality control and through inspection.

* Compensation standard concerning repair, replacement, refund of the product complies with

"Consumer's Protection Law" noticed by Korea Trade Fair Commission.

International Sales & service

Bionet Co., Ltd.:

#1101 ,11F E&C Venture Dream Tower3 38-21, Digital-Ro, 31-Gil,

Guro-Gu, Seoul, REPUBLIC OF KOREA

Tel: +82-2-6300-6418 / Fax: +82-2-6300-6454 / e-mail: sales@ebionet.com

Website: www.ebionet.com

U.S.A sales & service representative

Bionet America, Inc.:

2691, Dow Ave, Suite B

Tustin, CA 92780 U.S.A.

Toll Free: 1-877-924-6638 FAX: 1-714-734-1761 / e-mail: support@bionetus.com

Website: www.bionetus.com

European sales & service representative

MGB Endoskopische Geräte GmbH Berlin:

Schwarzschildstraße 6

D-12489 Berlin, Germany

Tel. +49(0)306392-7000 / Fax. +49(0)306392-7011 / e-mail: sales@mgb-berlin.de

Website: www.mgb-berlin.de

BIONET CO., LTD.

Product Name: BM5 (CS, CX)

Rev. 3.1 218